1. Bodmer, J.L., P. Schneider, and J. Tschopp, The molecular architecture of the TNF superfamily. Trends Biochem Sci, 2002. 27(1): p. 19-26.
2. Locksley, R.M., N. Killeen, and M.J. Lenardo, The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001. 104(4): p. 487-501.
3. Aggarwal, B.B., Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol, 2003. 3(9): p. 745-56.
4. Smith, C.A., T. Farrah, and R.G. Goodwin, The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell, 1994. 76(6): p. 959-62.
5. Gruss, H.J. and S.K. Dower, Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood, 1995. 85(12): p. 3378-404.
6. Chen, Y., S.S. Molloy, L. Thomas, J. Gambee, H.P. Bachinger, B. Ferguson, J. Zonana, G. Thomas, and N.P. Morris, Mutations within a furin consensus sequence block proteolytic release of ectodysplasin-A and cause X-linked hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7218-23.
7. Schneider, P., S.L. Street, O. Gaide, S. Hertig, A. Tardivel, J. Tschopp, L. Runkel, K. Alevizopoulos, B.M. Ferguson, and J. Zonana, Mutations leading to X-linked hypohidrotic ectodermal dysplasia affect three major functional
domains in the tumor necrosis factor
family member ectodysplasin-A. J Biol Chem, 2001. 276(22): p. 18819-27.
8. Fu, Y.X. and D.D. Chaplin, Development and maturation of secondary lymphoid tissues. Annu Rev Immunol, 1999. 17: p. 399-433.
9. Arch, R.H., R.W. Gedrich, and C.B. Thompson, Tumor necrosis factor receptor-associated factors (TRAFs)--a
family of adapter proteins that regulates life and death. Genes Dev, 1998. 12(18): p. 2821-30.
10. Darnay, B.G., J. Ni, P.A. Moore, and B.B. Aggarwal, Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem, 1999. 274(12): p. 7724-31.
11. McWhirter, S.M., S.S. Pullen, B.G. Werneburg, M.E. Labadia, R.H. Ingraham, J.J. Crute, M.R. Kehry, and T. Alber, Structural and biochemical analysis of signal transduction by the TRAF
family of adapter proteins. Cold Spring Harb Symp Quant Biol, 1999. 64: p. 551-62.
12. Yasuda, H., N. Shima, N. Nakagawa, S.I. Mochizuki, K. Yano, N. Fujise, Y. Sato, M. Goto, K. Yamaguchi, M. Kuriyama, T. Kanno, A. Murakami, E. Tsuda, T. Morinaga, and K. Higashio, Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology, 1998. 139(3): p. 1329-37.
13. Tsuda, E., M. Goto, S. Mochizuki, K. Yano, F. Kobayashi, T. Morinaga, and K. Higashio, Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun, 1997. 234(1): p. 137-42.
14. Simonet, W.S., D.L. Lacey, C.R. Dunstan, M. Kelley, M.S. Chang, R. Luthy, H.Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M. DeRose, R. Elliott, A. Colombero, H.L. Tan, G. Trail, J. Sullivan, E. Davy, N. Bucay, L. Renshaw-Gegg, T.M. Hughes, D. Hill, W. Pattison, P. Campbell, W.J. Boyle, and et al., Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997. 89(2): p. 309-19.
15. Hofbauer, L.C. and A.E. Heufelder, Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med, 2001. 79(5-6): p. 243-53.
16. Tan, K.B., J. Harrop, M. Reddy, P. Young, J. Terrett, J. Emery, G. Moore, and A. Truneh, Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene, 1997. 204(1-2): p. 35-46.
17. Kwon, B.S., S. Wang, N. Udagawa, V. Haridas, Z.H. Lee, K.K. Kim, K.O. Oh, J. Greene, Y. Li, J. Su, R. Gentz, B.B. Aggarwal, and J. Ni, TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. Faseb J, 1998. 12(10): p. 845-54.
18. Yun, T.J., P.M. Chaudhary, G.L. Shu, J.K. Frazer, M.K. Ewings, S.M. Schwartz, V. Pascual, L.E. Hood, and E.A. Clark, OPG/FDCR-1, a TNF receptor
family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol, 1998. 161(11): p. 6113-21.
19. Saidenberg-Kermanac'h, N., M. Cohen-Solal, N. Bessis, M.C. De Vernejoul, and M.C. Boissier, Role for osteoprotegerin in rheumatoid inflammation. Joint Bone Spine, 2004. 71(1): p. 9-13.
20. Yamaguchi, K., M. Kinosaki, M. Goto, F. Kobayashi, E. Tsuda, T. Morinaga, and K. Higashio, Characterization of structural
domains of human osteoclastogenesis inhibitory factor. J Biol Chem, 1998. 273(9): p. 5117-23.
21. Lee, S.Y., D.R. Kaufman, A.L. Mora, A. Santana, M. Boothby, and Y. Choi, Stimulus-dependent synergism of the antiapoptotic tumor necrosis factor receptor-associated factor 2 (TRAF2) and nuclear factor kappaB pathways. J Exp Med, 1998. 188(7): p. 1381-4.
22. Walsh, M.C. and Y. Choi, Biology of the TRANCE axis. Cytokine Growth Factor Rev, 2003. 14(3-4): p. 251-63.
23. Schoppet, M., K.T. Preissner, and L.C. Hofbauer, RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol, 2002. 22(4): p. 549-53.
24. Makhluf, H.A., S.M. Mueller, S. Mizuno, and J. Glowacki, Age-related decline in osteoprotegerin expression by human bone marrow cells cultured in three-dimensional collagen sponges. Biochem Biophys Res Commun, 2000. 268(3): p. 669-72.
25. Kudlacek, S., B. Schneider, W. Woloszczuk, P. Pietschmann, and R. Willvonseder, Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone, 2003. 32(6): p. 681-6.
26. Khosla, S., Minireview: the OPG/RANKL/RANK system. Endocrinology, 2001. 142(12): p. 5050-5.
27. Min, H., S. Morony, I. Sarosi, C.R. Dunstan, C. Capparelli, S. Scully, G. Van, S. Kaufman, P.J. Kostenuik, D.L. Lacey, W.J. Boyle, and W.S. Simonet, Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med, 2000. 192(4): p. 463-74.
28. Bucay, N., I. Sarosi, C.R. Dunstan, S. Morony, J. Tarpley, C. Capparelli, S. Scully, H.L. Tan, W. Xu, D.L. Lacey, W.J. Boyle, and W.S. Simonet, osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998. 12(9): p. 1260-8.
29. Hofbauer, L.C., A. Neubauer, and A.E. Heufelder, Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases.
Cancer, 2001. 92(3): p. 460-70.
30. Gayard, P., J.M. Garcier, J.Y. Boire, A. Ravel, N. Perez, C. Privat, P. Lucien, J.F. Viallet, and L. Boyer, Spiral CT quantification of aorto-renal calcification and its use in the detection of atheromatous renal artery stenosis: A study in 42 patients. Cardiovasc Intervent Radiol, 2000. 23(1): p. 17-21.
31. Hak, A.E., H.A. Pols, A.M. van Hemert, A. Hofman, and J.C. Witteman, Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol, 2000. 20(8): p. 1926-31.
32. Nitta, K., T. Akiba, K. Uchida, S. Otsubo, T. Takei, W. Yumura, T. Kabaya, and H. Nihei, Serum osteoprotegerin levels and the extent of vascular calcification in haemodialysis patients. Nephrol Dial Transplant, 2004.
33. Cremer, I., M.C. Dieu-Nosjean, S. Marechal, C. Dezutter-Dambuyant, S. Goddard, D. Adams, N. Winter, C. Menetrier-Caux, C. Sautes-Fridman, W.H. Fridman, and C.G. Mueller, Long-lived immature dendritic cells mediated by TRANCE-RANK interaction. Blood, 2002. 100(10): p. 3646-55.
34. Josien, R., H.L. Li, E. Ingulli, S. Sarma, B.R. Wong, M. Vologodskaia, R.M. Steinman, and Y. Choi, TRANCE, a tumor necrosis factor
family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med, 2000. 191(3): p. 495-502.
35. Wong, B.R., R. Josien, and Y. Choi, TRANCE is a TNF
family member that regulates dendritic cell and osteoclast function. J Leukoc Biol, 1999. 65(6): p. 715-24.
36. Dougall, W.C., M. Glaccum, K. Charrier, K. Rohrbach, K. Brasel, T. De Smedt, E. Daro, J. Smith, M.E. Tometsko, C.R. Maliszewski, A. Armstrong, V. Shen, S. Bain, D. Cosman, D. Anderson, P.J. Morrissey, J.J. Peschon, and J. Schuh, RANK is essential for osteoclast and lymph node development. Genes Dev, 1999. 13(18): p. 2412-24.
37. Kong, Y.Y., W.J. Boyle, and J.M. Penninger, Osteoprotegerin ligand: a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol, 1999. 77(2): p. 188-93.
38. Kong, Y.Y., H. Yoshida, I. Sarosi, H.L. Tan, E. Timms, C. Capparelli, S. Morony, A.J. Oliveira-dos-Santos, G. Van, A. Itie, W. Khoo, A. Wakeham, C.R. Dunstan, D.L. Lacey, T.W. Mak, W.J. Boyle, and J.M. Penninger, OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999. 397(6717): p. 315-23.
39. Truneh, A., S. Sharma, C. Silverman, S. Khandekar, M.P. Reddy, K.C. Deen, M.M. McLaughlin, S.M. Srinivasula, G.P. Livi, L.A. Marshall, E.S. Alnemri, W.V. Williams, and M.L. Doyle, Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. J Biol Chem, 2000. 275(30): p. 23319-25.
40. Atkins, G.J., S. Bouralexis, A. Evdokiou, S. Hay, A. Labrinidis, A.C. Zannettino, D.R. Haynes, and D.M. Findlay, Human osteoblasts are resistant to Apo2L/TRAIL-mediated apoptosis. Bone, 2002. 31(4): p. 448-56.
41. Yun, T.J., M.D. Tallquist, A. Aicher, K.L. Rafferty, A.J. Marshall, J.J. Moon, M.E. Ewings, M. Mohaupt, S.W. Herring, and E.A. Clark, Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. J Immunol, 2001. 166(3): p. 1482-91.
42. Lacey, D.L., E. Timms, H.L. Tan, M.J. Kelley, C.R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, H. Hsu, J. Sullivan, N. Hawkins, E. Davy, C. Capparelli, A. Eli, Y.X. Qian, S. Kaufman, I. Sarosi, V. Shalhoub, G. Senaldi, J. Guo, J. Delaney, and W.J. Boyle, Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998. 93(2): p. 165-76.
43. Yasuda, H., N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, and T. Suda, Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A, 1998. 95(7): p. 3597-602.
44. Anderson, D.M., E. Maraskovsky, W.L. Billingsley, W.C. Dougall, M.E. Tometsko, E.R. Roux, M.C. Teepe, R.F. DuBose, D. Cosman, and L. Galibert, A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 1997. 390(6656): p. 175-9.
45. Lum, L., B.R. Wong, R. Josien, J.D. Becherer, H. Erdjument-Bromage, J. Schlondorff, P. Tempst, Y. Choi, and C.P. Blobel, Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF
family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem, 1999. 274(19): p. 13613-8.
46. Roodman, G.D., Cell biology of the osteoclast. Exp Hematol, 1999. 27(8): p. 1229-41.
47. Feldmann, M., F.M. Brennan, and R.N. Maini, Role of cytokines in rheumatoid
arthritis. Annu Rev Immunol, 1996. 14: p. 397-440.
48. Kong, Y.Y., U. Feige, I. Sarosi, B. Bolon, A. Tafuri, S. Morony, C. Capparelli, J. Li, R. Elliott, S. McCabe, T. Wong, G. Campagnuolo, E. Moran, E.R. Bogoch, G. Van, L.T. Nguyen, P.S. Ohashi, D.L. Lacey, E. Fish, W.J. Boyle, and J.M. Penninger, Activated T cells regulate bone loss and joint destruction in adjuvant
arthritis through osteoprotegerin ligand. Nature, 1999. 402(6759): p. 304-9.
49. Wiley, S.R., K. Schooley, P.J. Smolak, W.S. Din, C.P. Huang, J.K. Nicholl, G.R. Sutherland, T.D. Smith, C. Rauch, C.A. Smith, and et al., Identification and characterization of a new member of the TNF
family that induces apoptosis. Immunity, 1995. 3(6): p. 673-82.
50. Pitti, R.M., S.A. Marsters, S. Ruppert, C.J. Donahue, A. Moore, and A. Ashkenazi, Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine
family. J Biol Chem, 1996. 271(22): p. 12687-90.
51. Almasan, A. and A. Ashkenazi, Apo2L/TRAIL: apoptosis signaling, biology, and potential for
cancer therapy. Cytokine Growth Factor Rev, 2003. 14(3-4): p. 337-48.
52. Wang, S. and W.S. El-Deiry, TRAIL and apoptosis induction by TNF-family death receptors. Oncogene, 2003. 22(53): p. 8628-33.
53. Monleon, I., M.J. Martinez-Lorenzo, L. Monteagudo, P. Lasierra, M. Taules, M. Iturralde, A. Pineiro, L. Larrad, M.A. Alava, J. Naval, and A. Anel, Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol, 2001. 167(12): p. 6736-44.
54. Mariani, S.M. and P.H. Krammer, Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage. Eur J Immunol, 1998. 28(3): p. 973-82.
55. LeBlanc, H.N. and A. Ashkenazi, Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ, 2003. 10(1): p. 66-75.
56. Eaton, C.L., J.M. Wells, I. Holen, P.I. Croucher, and F.C. Hamdy, Serum osteoprotegerin (OPG) levels are associated with disease progression and response to androgen ablation in patients with prostate
cancer. Prostate, 2004. 59(3): p. 304-10.
57. Holen, I., P.I. Croucher, F.C. Hamdy, and C.L. Eaton, Osteoprotegerin (OPG) is a survival factor for human prostate
cancer cells.
Cancer Res, 2002. 62(6): p. 1619-23.
58. Bodmer, J.L., P. Meier, J. Tschopp, and P. Schneider, Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J Biol Chem, 2000. 275(27): p. 20632-7.
59. Zhang, X.D., A. Franco, K. Myers, C. Gray, T. Nguyen, and P. Hersey, Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma.
Cancer Res, 1999. 59(11): p. 2747-53.
60. Gura, T., How TRAIL kills
cancer cells, but not normal cells.
Science, 1997. 277(5327): p. 768.
61. Ashkenazi, A. and V.M. Dixit, Death receptors: signaling and modulation.
Science, 1998. 281(5381): p. 1305-8.
62. Liu, Y.J., Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell, 2001. 106(3): p. 259-62.
63. Ito, T., M. Inaba, K. Inaba, J. Toki, S. Sogo, T. Iguchi, Y. Adachi, K. Yamaguchi, R. Amakawa, J. Valladeau, S. Saeland, S. Fukuhara, and S. Ikehara, A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J Immunol, 1999. 163(3): p. 1409-19.
64. Liu, Y.J., H. Kanzler, V. Soumelis, and M. Gilliet, Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol, 2001. 2(7): p. 585-9.
65. Whiteside, T.L. and C. Odoux, Dendritic cell biology and
cancer therapy.
Cancer Immunol Immunother, 2004. 53(3): p. 240-8.
66. Gatti, E. and P. Pierre, Understanding the cell biology of antigen presentation: the dendritic cell contribution. Curr Opin Cell Biol, 2003. 15(4): p. 468-73.
67. Moll, H., Dendritic cells and
host resistance to infection. Cell Microbiol, 2003. 5(8): p. 493-500.
68. Celluzzi, C.M., J.I. Mayordomo, W.J. Storkus, M.T. Lotze, and L.D. Falo, Jr., Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med, 1996. 183(1): p. 283-7.
69. Ashley, D.M., B. Faiola, S. Nair, L.P. Hale, D.D. Bigner, and E. Gilboa, Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med, 1997. 186(7): p. 1177-82.
70. Kramer, K.L. and H.J. Yost, Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet, 2003. 37: p. 461-84.
71. Bernfield, M., M. Gotte, P.W. Park, O. Reizes, M.L. Fitzgerald, J. Lincecum, and M. Zako, Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem, 1999. 68: p. 729-77.
72. Rapraeger, A.C., Molecular interactions of syndecans during development. Semin Cell Dev Biol, 2001. 12(2): p. 107-16.
73. Couchman, J.R., Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol, 2003. 4(12): p. 926-37.
74. Carey, D.J., Syndecans: multifunctional cell-surface co-receptors. Biochem J, 1997. 327 ( Pt 1): p. 1-16.
75. Fransson, L.A., Glypicans. Int J Biochem Cell Biol, 2003. 35(2): p. 125-9.
76. Ilangumaran, S., B. Borisch, and D.C. Hoessli, Signal transduction via CD44: role of plasma membrane microdomains. Leuk Lymphoma, 1999. 35(5-6): p. 455-69.
77. Ponta, H., L. Sherman, and P.A. Herrlich, CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol, 2003. 4(1): p. 33-45.
78. Lund, J., G. Winter, P.T. Jones, J.D. Pound, T. Tanaka, M.R. Walker, P.J. Artymiuk, Y. Arata, D.R. Burton, R. Jefferis, and et al., Human Fc gamma RI and Fc gamma RII interact with distinct but overlapping sites on human IgG. J Immunol, 1991. 147(8): p. 2657-62.
79. Ettinger, R., J.L. Browning, S.A. Michie, W. van Ewijk, and H.O. McDevitt, Disrupted splenic architecture, but normal lymph node development in mice expressing a soluble lymphotoxin-beta receptor-IgG1 fusion protein. Proc Natl Acad Sci U S A, 1996. 93(23): p. 13102-7.
80. Standal, T., C. Seidel, O. Hjertner, T. Plesner, R.D. Sanderson, A. Waage, M. Borset, and A. Sundan, Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood, 2002. 100(8): p. 3002-7.
81. Esko, J.D., J.L. Weinke, W.H. Taylor, G. Ekborg, L. Roden, G. Anantharamaiah, and A. Gawish, Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J Biol Chem, 1987. 262(25): p. 12189-95.
82. Lidholt, K., J.L. Weinke, C.S. Kiser, F.N. Lugemwa, K.J. Bame, S. Cheifetz, J. Massague, U. Lindahl, and J.D. Esko, A
single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci U S A, 1992. 89(6): p. 2267-71.
83. Hsu, T.L., Y.C. Chang, S.J. Chen, Y.J. Liu, A.W. Chiu, C.C. Chio, L. Chen, and S.L. Hsieh, Modulation of dendritic cell differentiation and maturation by decoy receptor 3. J Immunol, 2002. 168(10): p. 4846-53.
84. Chang, Y.C., T.L. Hsu, H.H. Lin, C.C. Chio, A.W. Chiu, N.J. Chen, C.H. Lin, and S.L. Hsieh, Modulation of macrophage differentiation and activation by decoy receptor 3. J Leukoc Biol, 2004. 75(3): p. 486-94.
85. Jones, M., L. Tussey, N. Athanasou, and D.G. Jackson, Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action. J Biol Chem, 2000. 275(11): p. 7964-74.
86. Blair, P.J., J.L. Riley, D.M. Harlan, R. Abe, D.K. Tadaki, S.C. Hoffmann, L. White, T. Francomano, S.J. Perfetto, A.D. Kirk, and C.H. June, CD40 ligand (CD154) triggers a short-term CD4(+) T cell activation response that results in secretion of immunomodulatory cytokines and apoptosis. J Exp Med, 2000. 191(4): p. 651-60.
87. Cayabyab, M., J.H. Phillips, and L.L. Lanier, CD40 preferentially costimulates activation of CD4+ T lymphocytes. J Immunol, 1994. 152(4): p. 1523-31.
88. Lens, S.M., P. Drillenburg, B.F. den Drijver, G. van Schijndel, S.T. Pals, R.A. van Lier, and M.H. van Oers, Aberrant expression and reverse signalling of CD70 on malignant B cells. Br J Haematol, 1999. 106(2): p. 491-503.
89. Langstein, J., J. Michel, and H. Schwarz, CD137 induces proliferation and endomitosis in monocytes. Blood, 1999. 94(9): p. 3161-8.
90. Suzuki, I. and P.J. Fink, The dual functions of fas ligand in the regulation of peripheral CD8+ and CD4+ T cells. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1707-12.
91. Stuber, E., M. Neurath, D. Calderhead, H.P. Fell, and W. Strober, Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine
family, induces proliferation and differentiation in murine splenic B cells. Immunity, 1995. 2(5): p. 507-21.
92. Suzuki, I. and P.J. Fink, Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J Exp Med, 1998. 187(1): p. 123-8.
93. van Essen, D., H. Kikutani, and D. Gray, CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature, 1995. 378(6557): p. 620-3.
94. Wiley, S.R., R.G. Goodwin, and C.A. Smith, Reverse signaling via CD30 ligand. J Immunol, 1996. 157(8): p. 3635-9.
95. Chen, N.J., M.W. Huang, and S.L. Hsieh, Enhanced secretion of IFN-gamma by activated Th1 cells occurs via reverse signaling through TNF-related activation-induced cytokine. J Immunol, 2001. 166(1): p. 270-6.
96. Chou, A.H., H.F. Tsai, L.L. Lin, S.L. Hsieh, P.I. Hsu, and P.N. Hsu, Enhanced proliferation and increased IFN-gamma production in T cells by signal transduced through TNF-related apoptosis-inducing ligand. J Immunol, 2001. 167(3): p. 1347-52.
97. Okuma, K., K.P. Dalton, L. Buonocore, E. Ramsburg, and J.K.
Rose, Development of a novel surrogate
virus for human T-cell leukemia
virus type 1: inhibition of infection by osteoprotegerin. J Virol, 2003. 77(15): p. 8562-9.
98. Sung, H.H., J.H. Juang, Y.C. Lin, C.H. Kuo, J.T. Hung, A. Chen, D.M. Chang, S.Y. Chang, S.L. Hsieh, and H.K. Sytwu, Transgenic Expression of Decoy Receptor 3 Protects Islets from Spontaneous and Chemical-induced Autoimmune Destruction in Nonobese Diabetic Mice. J Exp Med, 2004. 199(8): p. 1143-51.
99. Yang, C.R., J.H. Wang, S.L. Hsieh, S.M. Wang, T.L. Hsu, and W.W. Lin, Decoy receptor 3 (DcR3) induces osteoclast formation from monocyte/macrophage lineage precursor cells. Cell Death Differ, 2004.
100. Hsu, M.J., W.W. Lin, W.C. Tsao, Y.C. Chang, T.L. Hsu, A.W. Chiu, C.C. Chio, and S.L. Hsieh, Enhanced adhesion of monocytes via reverse signaling triggered by decoy receptor 3. Exp Cell Res, 2004. 292(2): p. 241-51.
101. Wu, S.F., T.M. Liu, Y.C. Lin, H.K. Sytwu, H.F. Juan, S.T. Chen, K.L. Shen, S.C. Hsi, and S.L. Hsieh, Immunomodulatory effect of decoy receptor 3 on the differentiation and function of bone marrow-derived dendritic cells in nonobese diabetic mice: from regulatory mechanism to clinical implication. J Leukoc Biol, 2004. 75(2): p. 293-306.
102. Sugita, M., P.J. Peters, and M.B. Brenner, Pathways for lipid antigen presentation by CD1 molecules: nowhere for intracellular pathogens to hide.
Traffic, 2000. 1(4): p. 295-300.
103. Takayanagi, H., K. Ogasawara, S. Hida, T. Chiba, S. Murata, K. Sato, A. Takaoka, T. Yokochi, H. Oda, K. Tanaka, K. Nakamura, and T. Taniguchi, T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature, 2000. 408(6812): p. 600-5.
104. Mirosavljevic, D., J.M. Quinn, J. Elliott, N.J. Horwood, T.J. Martin, and M.T. Gillespie, T-cells mediate an inhibitory effect of interleukin-4 on osteoclastogenesis. J Bone Miner Res, 2003. 18(6): p. 984-93.
105. Horwood, N.J., J. Elliott, T.J. Martin, and M.T. Gillespie, IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol, 2001. 166(8): p. 4915-21.
106. Horwood, N.J., N. Udagawa, J. Elliott, D. Grail, H. Okamura, M. Kurimoto, A.R. Dunn, T. Martin, and M.T. Gillespie, Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J Clin Invest, 1998. 101(3): p. 595-603.
107. Bekker, P.J., D. Holloway, A. Nakanishi, M. Arrighi, P.T. Leese, and C.R. Dunstan, The effect of a
single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res, 2001. 16(2): p. 348-60.