跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹月瑄
研究生(外文):Yueh-Hsuan Chan
論文名稱:骨頭保護素對樹狀細胞分化之調控
論文名稱(外文):Modulatory Effects of Osteoprotegerin on Dendritic Cell Differentiation
指導教授:謝世良
指導教授(外文):Shie-Liang Hsieh
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:108
中文關鍵詞:骨頭保護素樹狀細胞
外文關鍵詞:OPGdendritic cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
骨頭保護素 (OPG) 為腫瘤壞死因子受體 (TNFR) 家族中的一員,它是 TRANCE 和 TRAIL 的可溶性受體。目前為大家所熟知骨頭保護素可藉由阻斷 TRANCE 的作用來抑制蝕骨細胞 (osteoclast) 的分化及活化。此外,由骨頭保護素的基因剔除小鼠 (OPG-/-) 所得到的骨髓源性樹狀細胞 (bone marrow-derived dendritic cell) 具有較強的能力來刺激異體 T 細胞的增生,且會分泌較多的發炎性細胞激素,由此顯示骨頭保護素在免疫反應中對於調控樹狀細胞的功能扮演著一個重要的角色。為了了解骨頭保護素是否可藉由調控樹狀細胞的分化來調空其功能,我們生產了重組的骨頭保護素來研究其在人類 CD14+ 單核細胞分化成樹狀細胞的過程中所扮演的角色。我們的研究結果顯示重組骨頭保護素與人類 IgG1 Fc 融合蛋白 (OPG.Fc)、交聯之重組骨頭保護素與 FLAG 融合蛋白 (cross-linked OPG.FLAG) 及重組骨頭保護素與突變的人類 IgG1 Fc 融合蛋白 (OPG.Fcmut) 皆具顯著的能力來調節由單核細胞分化而來之樹狀細胞的形態,其中包括表面抗原 CD1a、CD80/B7.1及 DC-SIGN 表現量的下降,而表面抗原 CD86/B7.2 的表現量則上升。此外, 重組骨頭保護素與人類 IgG1 Fc 融合蛋白處理過之樹狀細胞刺激 CD4+ T 細胞增生的能力明顯地減弱,且顯著地激活了 CD4+ T 細胞產生較高量的 IFN-γ 及 IL-4。有趣的是,骨頭保護素所引起的調節作用並非藉由與其已知的配體,TRANCE 及 TRAIL ,之結合。骨頭保護素所引起的調節作用乃藉由骨頭保護素 C 端會和肝磷脂 (heparin) 結合的區域和單核細胞表面的硫酸肝素蛋白多糖 (HSPG) 之間的交互作用所造成。這些結果顯示骨頭保護素可藉由交聯單核細胞表面之硫酸肝素蛋白多糖來調節免疫反應,同時也為未來提供了一個新穎的療法即利用交聯細胞表面之硫酸肝素蛋白多糖來調節宿主之免疫反應。
Osteoprotegerin (OPG), a member of tumor necrosis factor receptor superfamily, is a soluble receptor for both TRANCE and TRAIL. It is well known that OPG regulates bone metabolism by blocking the effects of TRANCE to inhibit osteoclast differentiation and activation. Moreover, the bone marrow-derived dendritic cells (DCs) from OPG-/- mice are more efficiently in stimulating allogeneic T cells and secrete elevated amounts of inflammatory cytokines, suggesting OPG plays an important role in the immune response regulating the function of DCs. To understand whether OPG affects the functions of DCs through modulating DC differentiation, we generate recombinant OPG proteins to investigate its role in the differentiation of human CD14+ monocytes to DCs. We find that OPG.Fc, cross-linked OPG.FLAG, and OPG.Fcmut all have profound effects to modulate the phenotype of CD14+ monocytes-derived immature DCs, including the down-regulation of CD1a, CD80, and DC-SIGN, as well as the up-regulation of CD86. Moreover, OPG.Fc-primed immature DCs suppress CD4+ T cell proliferation, and up-regulate IFN-γ and IL-4 secretion of CD4+ T cells in allogeneic mixed lymphocyte reaction (MLR). Interestingly, the modulatory effects exerted by OPG are not through binding to its natural ligands, TRANCE and TRAIL. Instead, OPG-mediated modulation is via the interactions of the heparin-binding <a href="http://www.ntsearch.com/search.php?q=domain&v=56">domain</a> located at the C-terminus of OPG to heparan sulfate proteoglycans (HSPGs) expressed on the surface of CD14+ monocytes. These results reveal that cross-linking of HSPG on CD14+ monocytes by OPG can modulate immune responses, and suggest a novel therapeutic utility by cross-linking HSPG to modulate <a href="http://www.ntsearch.com/search.php?q=host&v=56">host</a> immunity in the future.
1. Bodmer, J.L., P. Schneider, and J. Tschopp, The molecular architecture of the TNF superfamily. Trends Biochem Sci, 2002. 27(1): p. 19-26.
2. Locksley, R.M., N. Killeen, and M.J. Lenardo, The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001. 104(4): p. 487-501.
3. Aggarwal, B.B., Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol, 2003. 3(9): p. 745-56.
4. Smith, C.A., T. Farrah, and R.G. Goodwin, The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell, 1994. 76(6): p. 959-62.
5. Gruss, H.J. and S.K. Dower, Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood, 1995. 85(12): p. 3378-404.
6. Chen, Y., S.S. Molloy, L. Thomas, J. Gambee, H.P. Bachinger, B. Ferguson, J. Zonana, G. Thomas, and N.P. Morris, Mutations within a furin consensus sequence block proteolytic release of ectodysplasin-A and cause X-linked hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7218-23.
7. Schneider, P., S.L. Street, O. Gaide, S. Hertig, A. Tardivel, J. Tschopp, L. Runkel, K. Alevizopoulos, B.M. Ferguson, and J. Zonana, Mutations leading to X-linked hypohidrotic ectodermal dysplasia affect three major functional domains in the tumor necrosis factor family member ectodysplasin-A. J Biol Chem, 2001. 276(22): p. 18819-27.
8. Fu, Y.X. and D.D. Chaplin, Development and maturation of secondary lymphoid tissues. Annu Rev Immunol, 1999. 17: p. 399-433.
9. Arch, R.H., R.W. Gedrich, and C.B. Thompson, Tumor necrosis factor receptor-associated factors (TRAFs)--a family of adapter proteins that regulates life and death. Genes Dev, 1998. 12(18): p. 2821-30.
10. Darnay, B.G., J. Ni, P.A. Moore, and B.B. Aggarwal, Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem, 1999. 274(12): p. 7724-31.
11. McWhirter, S.M., S.S. Pullen, B.G. Werneburg, M.E. Labadia, R.H. Ingraham, J.J. Crute, M.R. Kehry, and T. Alber, Structural and biochemical analysis of signal transduction by the TRAF family of adapter proteins. Cold Spring Harb Symp Quant Biol, 1999. 64: p. 551-62.
12. Yasuda, H., N. Shima, N. Nakagawa, S.I. Mochizuki, K. Yano, N. Fujise, Y. Sato, M. Goto, K. Yamaguchi, M. Kuriyama, T. Kanno, A. Murakami, E. Tsuda, T. Morinaga, and K. Higashio, Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology, 1998. 139(3): p. 1329-37.
13. Tsuda, E., M. Goto, S. Mochizuki, K. Yano, F. Kobayashi, T. Morinaga, and K. Higashio, Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun, 1997. 234(1): p. 137-42.
14. Simonet, W.S., D.L. Lacey, C.R. Dunstan, M. Kelley, M.S. Chang, R. Luthy, H.Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M. DeRose, R. Elliott, A. Colombero, H.L. Tan, G. Trail, J. Sullivan, E. Davy, N. Bucay, L. Renshaw-Gegg, T.M. Hughes, D. Hill, W. Pattison, P. Campbell, W.J. Boyle, and et al., Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997. 89(2): p. 309-19.
15. Hofbauer, L.C. and A.E. Heufelder, Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med, 2001. 79(5-6): p. 243-53.
16. Tan, K.B., J. Harrop, M. Reddy, P. Young, J. Terrett, J. Emery, G. Moore, and A. Truneh, Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene, 1997. 204(1-2): p. 35-46.
17. Kwon, B.S., S. Wang, N. Udagawa, V. Haridas, Z.H. Lee, K.K. Kim, K.O. Oh, J. Greene, Y. Li, J. Su, R. Gentz, B.B. Aggarwal, and J. Ni, TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. Faseb J, 1998. 12(10): p. 845-54.
18. Yun, T.J., P.M. Chaudhary, G.L. Shu, J.K. Frazer, M.K. Ewings, S.M. Schwartz, V. Pascual, L.E. Hood, and E.A. Clark, OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol, 1998. 161(11): p. 6113-21.
19. Saidenberg-Kermanac'h, N., M. Cohen-Solal, N. Bessis, M.C. De Vernejoul, and M.C. Boissier, Role for osteoprotegerin in rheumatoid inflammation. Joint Bone Spine, 2004. 71(1): p. 9-13.
20. Yamaguchi, K., M. Kinosaki, M. Goto, F. Kobayashi, E. Tsuda, T. Morinaga, and K. Higashio, Characterization of structural domains of human osteoclastogenesis inhibitory factor. J Biol Chem, 1998. 273(9): p. 5117-23.
21. Lee, S.Y., D.R. Kaufman, A.L. Mora, A. Santana, M. Boothby, and Y. Choi, Stimulus-dependent synergism of the antiapoptotic tumor necrosis factor receptor-associated factor 2 (TRAF2) and nuclear factor kappaB pathways. J Exp Med, 1998. 188(7): p. 1381-4.
22. Walsh, M.C. and Y. Choi, Biology of the TRANCE axis. Cytokine Growth Factor Rev, 2003. 14(3-4): p. 251-63.
23. Schoppet, M., K.T. Preissner, and L.C. Hofbauer, RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol, 2002. 22(4): p. 549-53.
24. Makhluf, H.A., S.M. Mueller, S. Mizuno, and J. Glowacki, Age-related decline in osteoprotegerin expression by human bone marrow cells cultured in three-dimensional collagen sponges. Biochem Biophys Res Commun, 2000. 268(3): p. 669-72.
25. Kudlacek, S., B. Schneider, W. Woloszczuk, P. Pietschmann, and R. Willvonseder, Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone, 2003. 32(6): p. 681-6.
26. Khosla, S., Minireview: the OPG/RANKL/RANK system. Endocrinology, 2001. 142(12): p. 5050-5.
27. Min, H., S. Morony, I. Sarosi, C.R. Dunstan, C. Capparelli, S. Scully, G. Van, S. Kaufman, P.J. Kostenuik, D.L. Lacey, W.J. Boyle, and W.S. Simonet, Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med, 2000. 192(4): p. 463-74.
28. Bucay, N., I. Sarosi, C.R. Dunstan, S. Morony, J. Tarpley, C. Capparelli, S. Scully, H.L. Tan, W. Xu, D.L. Lacey, W.J. Boyle, and W.S. Simonet, osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998. 12(9): p. 1260-8.
29. Hofbauer, L.C., A. Neubauer, and A.E. Heufelder, Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer, 2001. 92(3): p. 460-70.
30. Gayard, P., J.M. Garcier, J.Y. Boire, A. Ravel, N. Perez, C. Privat, P. Lucien, J.F. Viallet, and L. Boyer, Spiral CT quantification of aorto-renal calcification and its use in the detection of atheromatous renal artery stenosis: A study in 42 patients. Cardiovasc Intervent Radiol, 2000. 23(1): p. 17-21.
31. Hak, A.E., H.A. Pols, A.M. van Hemert, A. Hofman, and J.C. Witteman, Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol, 2000. 20(8): p. 1926-31.
32. Nitta, K., T. Akiba, K. Uchida, S. Otsubo, T. Takei, W. Yumura, T. Kabaya, and H. Nihei, Serum osteoprotegerin levels and the extent of vascular calcification in haemodialysis patients. Nephrol Dial Transplant, 2004.
33. Cremer, I., M.C. Dieu-Nosjean, S. Marechal, C. Dezutter-Dambuyant, S. Goddard, D. Adams, N. Winter, C. Menetrier-Caux, C. Sautes-Fridman, W.H. Fridman, and C.G. Mueller, Long-lived immature dendritic cells mediated by TRANCE-RANK interaction. Blood, 2002. 100(10): p. 3646-55.
34. Josien, R., H.L. Li, E. Ingulli, S. Sarma, B.R. Wong, M. Vologodskaia, R.M. Steinman, and Y. Choi, TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med, 2000. 191(3): p. 495-502.
35. Wong, B.R., R. Josien, and Y. Choi, TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J Leukoc Biol, 1999. 65(6): p. 715-24.
36. Dougall, W.C., M. Glaccum, K. Charrier, K. Rohrbach, K. Brasel, T. De Smedt, E. Daro, J. Smith, M.E. Tometsko, C.R. Maliszewski, A. Armstrong, V. Shen, S. Bain, D. Cosman, D. Anderson, P.J. Morrissey, J.J. Peschon, and J. Schuh, RANK is essential for osteoclast and lymph node development. Genes Dev, 1999. 13(18): p. 2412-24.
37. Kong, Y.Y., W.J. Boyle, and J.M. Penninger, Osteoprotegerin ligand: a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol, 1999. 77(2): p. 188-93.
38. Kong, Y.Y., H. Yoshida, I. Sarosi, H.L. Tan, E. Timms, C. Capparelli, S. Morony, A.J. Oliveira-dos-Santos, G. Van, A. Itie, W. Khoo, A. Wakeham, C.R. Dunstan, D.L. Lacey, T.W. Mak, W.J. Boyle, and J.M. Penninger, OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999. 397(6717): p. 315-23.
39. Truneh, A., S. Sharma, C. Silverman, S. Khandekar, M.P. Reddy, K.C. Deen, M.M. McLaughlin, S.M. Srinivasula, G.P. Livi, L.A. Marshall, E.S. Alnemri, W.V. Williams, and M.L. Doyle, Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. J Biol Chem, 2000. 275(30): p. 23319-25.
40. Atkins, G.J., S. Bouralexis, A. Evdokiou, S. Hay, A. Labrinidis, A.C. Zannettino, D.R. Haynes, and D.M. Findlay, Human osteoblasts are resistant to Apo2L/TRAIL-mediated apoptosis. Bone, 2002. 31(4): p. 448-56.
41. Yun, T.J., M.D. Tallquist, A. Aicher, K.L. Rafferty, A.J. Marshall, J.J. Moon, M.E. Ewings, M. Mohaupt, S.W. Herring, and E.A. Clark, Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. J Immunol, 2001. 166(3): p. 1482-91.
42. Lacey, D.L., E. Timms, H.L. Tan, M.J. Kelley, C.R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, H. Hsu, J. Sullivan, N. Hawkins, E. Davy, C. Capparelli, A. Eli, Y.X. Qian, S. Kaufman, I. Sarosi, V. Shalhoub, G. Senaldi, J. Guo, J. Delaney, and W.J. Boyle, Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998. 93(2): p. 165-76.
43. Yasuda, H., N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, and T. Suda, Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A, 1998. 95(7): p. 3597-602.
44. Anderson, D.M., E. Maraskovsky, W.L. Billingsley, W.C. Dougall, M.E. Tometsko, E.R. Roux, M.C. Teepe, R.F. DuBose, D. Cosman, and L. Galibert, A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 1997. 390(6656): p. 175-9.
45. Lum, L., B.R. Wong, R. Josien, J.D. Becherer, H. Erdjument-Bromage, J. Schlondorff, P. Tempst, Y. Choi, and C.P. Blobel, Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem, 1999. 274(19): p. 13613-8.
46. Roodman, G.D., Cell biology of the osteoclast. Exp Hematol, 1999. 27(8): p. 1229-41.
47. Feldmann, M., F.M. Brennan, and R.N. Maini, Role of cytokines in rheumatoid arthritis. Annu Rev Immunol, 1996. 14: p. 397-440.
48. Kong, Y.Y., U. Feige, I. Sarosi, B. Bolon, A. Tafuri, S. Morony, C. Capparelli, J. Li, R. Elliott, S. McCabe, T. Wong, G. Campagnuolo, E. Moran, E.R. Bogoch, G. Van, L.T. Nguyen, P.S. Ohashi, D.L. Lacey, E. Fish, W.J. Boyle, and J.M. Penninger, Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 1999. 402(6759): p. 304-9.
49. Wiley, S.R., K. Schooley, P.J. Smolak, W.S. Din, C.P. Huang, J.K. Nicholl, G.R. Sutherland, T.D. Smith, C. Rauch, C.A. Smith, and et al., Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 1995. 3(6): p. 673-82.
50. Pitti, R.M., S.A. Marsters, S. Ruppert, C.J. Donahue, A. Moore, and A. Ashkenazi, Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem, 1996. 271(22): p. 12687-90.
51. Almasan, A. and A. Ashkenazi, Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev, 2003. 14(3-4): p. 337-48.
52. Wang, S. and W.S. El-Deiry, TRAIL and apoptosis induction by TNF-family death receptors. Oncogene, 2003. 22(53): p. 8628-33.
53. Monleon, I., M.J. Martinez-Lorenzo, L. Monteagudo, P. Lasierra, M. Taules, M. Iturralde, A. Pineiro, L. Larrad, M.A. Alava, J. Naval, and A. Anel, Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol, 2001. 167(12): p. 6736-44.
54. Mariani, S.M. and P.H. Krammer, Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage. Eur J Immunol, 1998. 28(3): p. 973-82.
55. LeBlanc, H.N. and A. Ashkenazi, Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ, 2003. 10(1): p. 66-75.
56. Eaton, C.L., J.M. Wells, I. Holen, P.I. Croucher, and F.C. Hamdy, Serum osteoprotegerin (OPG) levels are associated with disease progression and response to androgen ablation in patients with prostate cancer. Prostate, 2004. 59(3): p. 304-10.
57. Holen, I., P.I. Croucher, F.C. Hamdy, and C.L. Eaton, Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res, 2002. 62(6): p. 1619-23.
58. Bodmer, J.L., P. Meier, J. Tschopp, and P. Schneider, Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J Biol Chem, 2000. 275(27): p. 20632-7.
59. Zhang, X.D., A. Franco, K. Myers, C. Gray, T. Nguyen, and P. Hersey, Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res, 1999. 59(11): p. 2747-53.
60. Gura, T., How TRAIL kills cancer cells, but not normal cells. Science, 1997. 277(5327): p. 768.
61. Ashkenazi, A. and V.M. Dixit, Death receptors: signaling and modulation. Science, 1998. 281(5381): p. 1305-8.
62. Liu, Y.J., Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell, 2001. 106(3): p. 259-62.
63. Ito, T., M. Inaba, K. Inaba, J. Toki, S. Sogo, T. Iguchi, Y. Adachi, K. Yamaguchi, R. Amakawa, J. Valladeau, S. Saeland, S. Fukuhara, and S. Ikehara, A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J Immunol, 1999. 163(3): p. 1409-19.
64. Liu, Y.J., H. Kanzler, V. Soumelis, and M. Gilliet, Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol, 2001. 2(7): p. 585-9.
65. Whiteside, T.L. and C. Odoux, Dendritic cell biology and cancer therapy. Cancer Immunol Immunother, 2004. 53(3): p. 240-8.
66. Gatti, E. and P. Pierre, Understanding the cell biology of antigen presentation: the dendritic cell contribution. Curr Opin Cell Biol, 2003. 15(4): p. 468-73.
67. Moll, H., Dendritic cells and host resistance to infection. Cell Microbiol, 2003. 5(8): p. 493-500.
68. Celluzzi, C.M., J.I. Mayordomo, W.J. Storkus, M.T. Lotze, and L.D. Falo, Jr., Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med, 1996. 183(1): p. 283-7.
69. Ashley, D.M., B. Faiola, S. Nair, L.P. Hale, D.D. Bigner, and E. Gilboa, Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med, 1997. 186(7): p. 1177-82.
70. Kramer, K.L. and H.J. Yost, Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet, 2003. 37: p. 461-84.
71. Bernfield, M., M. Gotte, P.W. Park, O. Reizes, M.L. Fitzgerald, J. Lincecum, and M. Zako, Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem, 1999. 68: p. 729-77.
72. Rapraeger, A.C., Molecular interactions of syndecans during development. Semin Cell Dev Biol, 2001. 12(2): p. 107-16.
73. Couchman, J.R., Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol, 2003. 4(12): p. 926-37.
74. Carey, D.J., Syndecans: multifunctional cell-surface co-receptors. Biochem J, 1997. 327 ( Pt 1): p. 1-16.
75. Fransson, L.A., Glypicans. Int J Biochem Cell Biol, 2003. 35(2): p. 125-9.
76. Ilangumaran, S., B. Borisch, and D.C. Hoessli, Signal transduction via CD44: role of plasma membrane microdomains. Leuk Lymphoma, 1999. 35(5-6): p. 455-69.
77. Ponta, H., L. Sherman, and P.A. Herrlich, CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol, 2003. 4(1): p. 33-45.
78. Lund, J., G. Winter, P.T. Jones, J.D. Pound, T. Tanaka, M.R. Walker, P.J. Artymiuk, Y. Arata, D.R. Burton, R. Jefferis, and et al., Human Fc gamma RI and Fc gamma RII interact with distinct but overlapping sites on human IgG. J Immunol, 1991. 147(8): p. 2657-62.
79. Ettinger, R., J.L. Browning, S.A. Michie, W. van Ewijk, and H.O. McDevitt, Disrupted splenic architecture, but normal lymph node development in mice expressing a soluble lymphotoxin-beta receptor-IgG1 fusion protein. Proc Natl Acad Sci U S A, 1996. 93(23): p. 13102-7.
80. Standal, T., C. Seidel, O. Hjertner, T. Plesner, R.D. Sanderson, A. Waage, M. Borset, and A. Sundan, Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood, 2002. 100(8): p. 3002-7.
81. Esko, J.D., J.L. Weinke, W.H. Taylor, G. Ekborg, L. Roden, G. Anantharamaiah, and A. Gawish, Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J Biol Chem, 1987. 262(25): p. 12189-95.
82. Lidholt, K., J.L. Weinke, C.S. Kiser, F.N. Lugemwa, K.J. Bame, S. Cheifetz, J. Massague, U. Lindahl, and J.D. Esko, A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci U S A, 1992. 89(6): p. 2267-71.
83. Hsu, T.L., Y.C. Chang, S.J. Chen, Y.J. Liu, A.W. Chiu, C.C. Chio, L. Chen, and S.L. Hsieh, Modulation of dendritic cell differentiation and maturation by decoy receptor 3. J Immunol, 2002. 168(10): p. 4846-53.
84. Chang, Y.C., T.L. Hsu, H.H. Lin, C.C. Chio, A.W. Chiu, N.J. Chen, C.H. Lin, and S.L. Hsieh, Modulation of macrophage differentiation and activation by decoy receptor 3. J Leukoc Biol, 2004. 75(3): p. 486-94.
85. Jones, M., L. Tussey, N. Athanasou, and D.G. Jackson, Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action. J Biol Chem, 2000. 275(11): p. 7964-74.
86. Blair, P.J., J.L. Riley, D.M. Harlan, R. Abe, D.K. Tadaki, S.C. Hoffmann, L. White, T. Francomano, S.J. Perfetto, A.D. Kirk, and C.H. June, CD40 ligand (CD154) triggers a short-term CD4(+) T cell activation response that results in secretion of immunomodulatory cytokines and apoptosis. J Exp Med, 2000. 191(4): p. 651-60.
87. Cayabyab, M., J.H. Phillips, and L.L. Lanier, CD40 preferentially costimulates activation of CD4+ T lymphocytes. J Immunol, 1994. 152(4): p. 1523-31.
88. Lens, S.M., P. Drillenburg, B.F. den Drijver, G. van Schijndel, S.T. Pals, R.A. van Lier, and M.H. van Oers, Aberrant expression and reverse signalling of CD70 on malignant B cells. Br J Haematol, 1999. 106(2): p. 491-503.
89. Langstein, J., J. Michel, and H. Schwarz, CD137 induces proliferation and endomitosis in monocytes. Blood, 1999. 94(9): p. 3161-8.
90. Suzuki, I. and P.J. Fink, The dual functions of fas ligand in the regulation of peripheral CD8+ and CD4+ T cells. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1707-12.
91. Stuber, E., M. Neurath, D. Calderhead, H.P. Fell, and W. Strober, Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity, 1995. 2(5): p. 507-21.
92. Suzuki, I. and P.J. Fink, Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J Exp Med, 1998. 187(1): p. 123-8.
93. van Essen, D., H. Kikutani, and D. Gray, CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature, 1995. 378(6557): p. 620-3.
94. Wiley, S.R., R.G. Goodwin, and C.A. Smith, Reverse signaling via CD30 ligand. J Immunol, 1996. 157(8): p. 3635-9.
95. Chen, N.J., M.W. Huang, and S.L. Hsieh, Enhanced secretion of IFN-gamma by activated Th1 cells occurs via reverse signaling through TNF-related activation-induced cytokine. J Immunol, 2001. 166(1): p. 270-6.
96. Chou, A.H., H.F. Tsai, L.L. Lin, S.L. Hsieh, P.I. Hsu, and P.N. Hsu, Enhanced proliferation and increased IFN-gamma production in T cells by signal transduced through TNF-related apoptosis-inducing ligand. J Immunol, 2001. 167(3): p. 1347-52.
97. Okuma, K., K.P. Dalton, L. Buonocore, E. Ramsburg, and J.K. Rose, Development of a novel surrogate virus for human T-cell leukemia virus type 1: inhibition of infection by osteoprotegerin. J Virol, 2003. 77(15): p. 8562-9.
98. Sung, H.H., J.H. Juang, Y.C. Lin, C.H. Kuo, J.T. Hung, A. Chen, D.M. Chang, S.Y. Chang, S.L. Hsieh, and H.K. Sytwu, Transgenic Expression of Decoy Receptor 3 Protects Islets from Spontaneous and Chemical-induced Autoimmune Destruction in Nonobese Diabetic Mice. J Exp Med, 2004. 199(8): p. 1143-51.
99. Yang, C.R., J.H. Wang, S.L. Hsieh, S.M. Wang, T.L. Hsu, and W.W. Lin, Decoy receptor 3 (DcR3) induces osteoclast formation from monocyte/macrophage lineage precursor cells. Cell Death Differ, 2004.
100. Hsu, M.J., W.W. Lin, W.C. Tsao, Y.C. Chang, T.L. Hsu, A.W. Chiu, C.C. Chio, and S.L. Hsieh, Enhanced adhesion of monocytes via reverse signaling triggered by decoy receptor 3. Exp Cell Res, 2004. 292(2): p. 241-51.
101. Wu, S.F., T.M. Liu, Y.C. Lin, H.K. Sytwu, H.F. Juan, S.T. Chen, K.L. Shen, S.C. Hsi, and S.L. Hsieh, Immunomodulatory effect of decoy receptor 3 on the differentiation and function of bone marrow-derived dendritic cells in nonobese diabetic mice: from regulatory mechanism to clinical implication. J Leukoc Biol, 2004. 75(2): p. 293-306.
102. Sugita, M., P.J. Peters, and M.B. Brenner, Pathways for lipid antigen presentation by CD1 molecules: nowhere for intracellular pathogens to hide. Traffic, 2000. 1(4): p. 295-300.
103. Takayanagi, H., K. Ogasawara, S. Hida, T. Chiba, S. Murata, K. Sato, A. Takaoka, T. Yokochi, H. Oda, K. Tanaka, K. Nakamura, and T. Taniguchi, T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature, 2000. 408(6812): p. 600-5.
104. Mirosavljevic, D., J.M. Quinn, J. Elliott, N.J. Horwood, T.J. Martin, and M.T. Gillespie, T-cells mediate an inhibitory effect of interleukin-4 on osteoclastogenesis. J Bone Miner Res, 2003. 18(6): p. 984-93.
105. Horwood, N.J., J. Elliott, T.J. Martin, and M.T. Gillespie, IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol, 2001. 166(8): p. 4915-21.
106. Horwood, N.J., N. Udagawa, J. Elliott, D. Grail, H. Okamura, M. Kurimoto, A.R. Dunn, T. Martin, and M.T. Gillespie, Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J Clin Invest, 1998. 101(3): p. 595-603.
107. Bekker, P.J., D. Holloway, A. Nakanishi, M. Arrighi, P.T. Leese, and C.R. Dunstan, The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res, 2001. 16(2): p. 348-60.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 第三號誘餌受體的功能鑑定
2. 乙型類澱粉蛋白、丙型干擾素及脂多醣誘發腦微膠細胞移動及聚集或製造發炎性分子之鑑別性機制
3. 以細胞培養模式探討細胞內鈣離子流及訊息傳導在胚胎著床時滋養層細胞於子宮內膜上皮擴張之角色
4. FasL/Fas凋亡系統及JNK活化在培養之滋養層細胞球於子宮內膜上皮單層向外生長之角色
5. NAD(P)H:QuinoneOxidoreductase(NQO1)的活性參與Beta-Lapachone對人類前列腺癌細胞株(DU145)凋亡之機轉
6. 研發川芎嗪的新應用探討川芎嗪在神經膠細胞瘤的療效
7. SYN-4對大白鼠血管平滑肌細胞鈣離子濃度的調節作用
8. 探討mRNA前驅分子之剪接調控蛋白RBM4於細胞內的功能
9. 探討β-lapachone在高血清濃度及低血清濃度培養下引致人類血管內皮細胞凋亡的機制
10. 刺激人類乳癌細胞CD44接受器所調節與轉移相關之基質金屬蛋白酶基因表現之探討
11. 乙型轉換生長因子藉由誘發MT1-MMP表現來造成CD44切割並促使乳癌細胞移動機制之探討
12. 探討抗氧化酵素對氧化低密度脂蛋白所引發人類主動脈平滑肌細胞增生之影響與其機制
13. 探討抗氧化酵素對於人類主動脈內皮細胞受腫瘤壞死因子刺激表現細胞間黏附因子之影響與其機轉
14. 剪接調節分子RBM4與其結合蛋白之功能探討
15. 探討丹參酚酸B對內毒素處理人類主動脈平滑肌細胞表現ICAM-1與Cox-2的影響與其機制