跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 10:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許恩旗
研究生(外文):En-Chi Hsu
論文名稱:B型肝炎病毒核心蛋白和細胞蛋白PTPH1的交互作用
論文名稱(外文):Interaction between Hepatitis B Virus Core Protein and Cellular Protein Tyrosine Phosphatase PTPH1
指導教授:丁令白
指導教授(外文):Ling-Pai Ting
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:182
中文關鍵詞:B 型肝炎病毒核心蛋白PTPH1細胞蛋白
外文關鍵詞:Hepatitis B VirusCore ProteinPTPH1
相關次數:
  • 被引用被引用:2
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
B 型肝炎病毒(hepatitis B virus),簡稱HBV,是一種DNA 病毒。HBV 感染
會造成的急性、慢性肝炎、肝硬化以及肝癌(hepatocellular cacinoma),是全球一
個非常重要的健康問題。HBV 的核心蛋白除了組成病毒的核心顆粒外,其在肝
臟細胞中的分佈可能會細胞核內多於細胞質中或反之,此分佈與細胞週期和疾病
的狀態有關。本實驗室以前發現HBV 核心蛋白會與細胞蛋白PTPH1 有交互作
用。PTPH1 是一個protein tyrosine phosphatase。本研究結果證明核心蛋白胺基酸
119~185 區域可與PTPH1 的PDZ domain 在in vitro 有交互作用。完整的核心蛋
白可與完整的細胞蛋白PTPH1 在細胞內有交互作用,而這樣的交互作用除了透
過PTPH1 的PDZ domain 與核心蛋白直接作用外,PTPH1 的FERM domain 則是
間接的調控兩者的交互作用,且這樣的交互作用不需要PTPH1 的酵素活性與
14-3-3 b的參與,同時此交互作用不影響PTPH1 的酵素活性以及PTPH1 和14-3-3
b的交互作用。免疫螢光結果顯示單獨表現的PTPH1 位於細胞膜與細胞骨架之
間,與核心蛋白的分佈位置並不相同,但二者同時表現時,PTPH1 分佈的位置
會與核心蛋白相同。更重要的是發現,將PTPH1 表現質體和可以進行HBV 複製
的HBV 表現質體同時轉染肝癌細胞株HuH-7 時,PTPH1 過量表現,會抑制在細
胞內HBV 病毒RNA 的量;而這樣的抑制作用是需要PTPH1 的FERM domain
使其位於細胞膜與細胞骨架之間,以及PTPH1 本身的酵素活性。並且此抑制的
作用並不受核心蛋白的影響,亦不需要核心蛋白的參與才可抑制。表示可能
PTPH1 同時具有兩種功能,目前正在進一步探討此抑制作用的機轉及意義。
Expression and distribution of core protein are tightly regulated during the
progression of liver disease in patients with chronic HBV infection, suggestive of a
role for core protein in the cytopathologic changes in persistent HBV infection. To
identify core interacting proteins of cellular origin that may be functionally involved
in the pathologic changes seen in chronic HBV infection, Our lab has previously used
the C-terminal 67-amino acid region of core protein as a bait to screen a liver cDNA
library by yeast two hybrid system. A protein tyrosine phosphatase PTPH1, which
consisted of a N-terminal segment, displaying homology to cytoskeletal-associated
proteins of the band 4.1 superfamily, a middle PDZ domain, and a C-terminal
phosphatase domain, was found to interact with the C-terminal region of the core
protein. The interaction between the core protein and PTPH1 was previously
demonstrated in vitro and in vivo. I was demonstrated that this interaction was
through the PDZ domain of PTPH1 and the C-terminal last four amino acid residues
of core protein. Interestingly, PTPH1 protein alone was localized mainly in the plasma
membrane. Its localization was in nucleus instead of plasma membrane when core
protein was present in nucleus. This nuclear localization of PTPH1 depended on its
interaction with the core protein. Furthermore, both PTPH1-core interaction and
localization change of PTPH1 tethered by core did not require the phosphatase
activity and phosphorylation of serine 359 and 835 residues of PTPH1. Furthermore,
over-expression of PTPH1 protein strongly reduced the level of HBV transcripts,
which in turn reduced the production of viral particles. When the expression of
endogenous PTPH1 was knocked down by interfering RNA, the level of HBV
transcripts was increased. PTPH1 therefore down regulated the level of HBV
transcripts. However, the PTPH1-induced suppression of level of HBV transcripts did
not require the PTPH1-core interaction. On the other hand, this PTPH1-induced
suppressive effect requires the phosphatase activity and FERM domain/or
submembrane localization.
1. Chisari, F.V., Rous-Whipple Award Lecture. Viruses, immunity, and cancer:
lessons from hepatitis B. Am J Pathol, 2000. 156(4): p. 1117-32.
2. Seeger, C. and W.S. Mason, Hepatitis B virus biology. Microbiol Mol Biol
Rev, 2000. 64(1): p. 51-68.
3. Birnbaum, F. and M. Nassal, Hepatitis B virus nucleocapsid assembly:
primary structure requirements in the core protein. J Virol, 1990. 64(7): p.
3319-30.
4. Crowther, R.A., et al., Three-dimensional structure of hepatitis B virus core
particles determined by electron cryomicroscopy. Cell, 1994. 77(6): p.
943-50.
5. Nassal, M. and H. Schaller, Hepatitis B virus replication. Trends Microbiol,
1993. 1(6): p. 221-8.
6. Burrell, C.J., E.J. Gowans, and B.P. Marmion, High levels of cytoplasmic
hepatitis B core antigen as reliable marker of HBV DNA replication. Lancet,
1985. 1(8426): p. 454-5.
7. Gallina, A., et al., A recombinant hepatitis B core antigen polypeptide with
the protamine- like domain deleted self-assembles into capsid particles but
fails to bind nucleic acids. J Virol, 1989. 63(11): p. 4645-52.
8. Hatton, T., S. Zhou, and D.N. Standring, RNA- and DNA-binding activities
in hepatitis B virus capsid protein: a model for their roles in viral replication.
J Virol, 1992. 66(9): p. 5232-41.
9. Lott, L., et al., Interaction between hepatitis B virus core protein and
reverse transcriptase. J Virol, 2000. 74(24): p. 11479-89.
10. Seifer, M. and D.N. Standring, Assembly and antigenicity of hepatitis B
virus core particles. Intervirology, 1995. 38(1-2): p. 47-62.
11. Nassal, M., The arginine-rich domain of the hepatitis B virus core protein is
required for pregenome encapsidation and productive viral positive- strand
DNA synthesis but not for virus assembly. J Virol, 1992. 66(7): p. 4107-16.
12. Eckhardt, S.G., D.R. Milich, and A. McLachlan, Hepatitis B virus core
antigen has two nuclear localization sequences in the arginine-rich carboxyl
terminus. J Virol, 1991. 65(2): p. 575-82.
13. Lan, Y.T., et al., Roles of the three major phosphorylation sites of hepatitis
B virus core protein in viral replication. Virology, 1999. 259(2): p. 342-8.
14. Liao, W. and J.H. Ou, Phosphorylation and nuclear localization of the
hepatitis B virus core protein: significance of serine in the three repeated
SPRRR motifs. J Virol, 1995. 69(2): p. 1025-9.
15. Kann, M., et al., Phosphorylation-dependent binding of hepatitis B virus
core particles to the nuclear pore complex. J Cell Biol, 1999. 145(1): p.
94
45-55.
16. Rabe, B., et al., Nuclear import of hepatitis B virus capsids and release of
the viral genome. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9849-54.
17. Pante, N. and M. Kann, Nuclear pore complex is able to transport
macromolecules with diameters of about 39 nm. Mol Biol Cell, 2002. 13(2):
p. 425-34.
18. Zoulim, F. and C. Seeger, Reverse transcription in hepatitis B viruses is
primed by a tyrosine residue of the polymerase. J Virol, 1994. 68(1): p. 6-13.
19. Kann, M. and W.H. Gerlich, Effect of core protein phosphorylation by
protein kinase C on encapsidation of RNA within core particles of hepatitis
B virus. J Virol, 1994. 68(12): p. 7993-8000.
20. Kau, J.H. and L.P. Ting, Phosphorylation of the core protein of hepatitis B
virus by a 46- kilodalton serine kinase. J Virol, 1998. 72(5): p. 3796-803.
21. Daub, H., et al., Identification of SRPK1 and SRPK2 as the major cellular
protein kinases phosphorylating hepatitis B virus core protein. J Virol, 2002.
76(16): p. 8124-37.
22. Yeh, C.T., et al., Cell cycle regulation of nuclear localization of hepatitis B
virus core protein. Proc Natl Acad Sci U S A, 1993. 90(14): p. 6459-63.
23. Chu, C.M. and Y.F. Liaw, Intrahepatic distribution of hepatitis B surface
and core antigens in chronic hepatitis B virus infection. Hepatocyte with
cytoplasmic/membranous hepatitis B core antigen as a possible target for
immune hepatocytolysis. Gastroenterology, 1987. 92(1): p. 220-5.
24. Fields, S. and R. Sternglanz, The two-hybrid system: an assay for
protein-protein interactions. Trends Genet, 1994. 10(8): p. 286-92.
25. Tonks, N.K. and B.G. Neel, Combinatorial control of the specificity of
protein tyrosine phosphatases. Curr Opin Cell Biol, 2001. 13(2): p. 182-95.
26. Hunter, T., The role of tyrosine phosphorylation in cell growth and disease.
Harvey Lect, 1998. 94: p. 81-119.
27. Fischer, E.H., Cell signaling by protein tyrosine phosphorylation. Adv
Enzyme Regul, 1999. 39: p. 359-69.
28. Andersen, J.N., et al., Structural and evolutionary relationships among
protein tyrosine phosphatase domains. Mol Cell Biol, 2001. 21(21): p.
7117-36.
29. Yang, Q. and N.K. Tonks, Isolation of a cDNA clone encoding a human
protein-tyrosine phosphatase with homology to the cytoskeletal-associated
proteins band 4.1, ezrin, and talin. Proc Natl Acad Sci U S A, 1991. 88(14):
p. 5949-53.
30. Takeuchi, K., et al., Structural diversity of band 4.1 superfamily members. J
95
Cell Sci, 1994. 107(Pt 7): p. 1921-8.
31. Gjorloff-Wingren, A., et al., Subcellular localization of intracellular protein
tyrosine phosphatases in T cells. Eur J Immunol, 2000. 30(8): p. 2412-21.
32. Nourry, C., S.G. Grant, and J.P. Borg, PDZ domain proteins: plug and play!
Sci STKE, 2003. 2003(179): p. RE7.
33. Songyang, Z., et al., Recognition of unique carboxyl-terminal motifs by
distinct PDZ domains. Science, 1997. 275(5296): p. 73-7.
34. Zhang, S.H., et al., Biochemical characterization of a human band
4.1-related protein- tyrosine phosphatase, PTPH1. J Biol Chem, 1995.
270(34): p. 20067-72.
35. Guan, K.L. and J.E. Dixon, Evidence for protein-tyrosine-phosphatase
catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem,
1991. 266(26): p. 17026-30.
36. Zhang, S.H., et al., Identification of the cell cycle regulator VCP
(p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine
phosphatase PTPH1. J Biol Chem, 1999. 274(25): p. 17806-12.
37. Sozio, M.S., et al., PTPH1 is a predominant protein-tyrosine phosphatase
capable of interacting with and dephosphorylating the T cell receptor zeta
subunit. J Biol Chem, 2004. 279(9): p. 7760-9.
38. Warabi, M., et al., Expression of protein tyrosine phosphatases and its
significance in esophageal cancer. Exp Mol Pathol, 2000. 68(3): p. 187-95.
39. Ikuta, S., et al., Expression of cytoskeletal-associated protein tyrosine
phosphatase PTPH1 mRNA in human hepatocellular carcinoma. J
Gastroenterol, 1994. 29(6): p. 727-32.
40. Itoh, F., et al., Expression and chromosomal assignment of PTPH1 gene
encoding a cytosolic protein tyrosine phosphatase homologous to
cytoskeletal- associated proteins. Int J Cancer, 1993. 55(6): p. 947-51.
41. Kitamura, T., et al., Gene expressions of protein tyrosine phosphatases in
regenerating rat liver and rat ascites hepatoma cells. Jpn J Cancer Res,
1995. 86(9): p. 811-8.
42. Wang, Z., et al., Mutational analysis of the tyrosine phosphatome in
colorectal cancers. Science, 2004. 304(5674): p. 1164-6.
43. Flint, A.J., et al., Development of "substrate-trapping" mutants to identify
physiological substrates of protein tyrosine phosphatases. Proc Natl Acad
Sci U S A, 1997. 94(5): p. 1680-5.
44. Egerton, M., et al., VCP, the mammalian homolog of cdc48, is tyrosine
phosphorylated in response to T cell antigen receptor activation. Embo J,
1992. 11(10): p. 3533-40.
96
45. Pasquali, C., et al., Identification of protein tyrosine phosphatases with
specificity for the ligand-activated growth hormone receptor. Mol
Endocrinol, 2003. 17(11): p. 2228-39.
46. He, K., et al., Janus kinase 2 determinants for growth hormone receptor
association, surface assembly, and signaling. Mol Endocrinol, 2003. 17(11):
p. 2211-27.
47. Frank, S.J., Growth hormone signalling and its regulation: preventing too
much of a good thing. Growth Horm IGF Res, 2001. 11(4): p. 201-12.
48. Frohlich, K.U., et al., Yeast cell cycle protein CDC48p shows full-length
homology to the mammalian protein VCP and is a member of a protein
family involved in secretion, peroxisome formation, and gene expression. J
Cell Biol, 1991. 114(3): p. 443-53.
49. Vale, R.D., AAA proteins. Lords of the ring. J Cell Biol, 2000. 150(1): p.
F13-9.
50. Maurizi, M.R. and C.C. Li, AAA proteins: in search of a common
molecular basis. International Meeting on Cellular Functions of AAA
Proteins. EMBO Rep, 2001. 2(11): p. 980-5.
51. Ogura, T. and A.J. Wilkinson, AAA+ superfamily ATPases: common
structure--diverse function. Genes Cells, 2001. 6(7): p. 575-97.
52. Patel, S. and M. Latterich, The AAA team: related ATPases with diverse
functions. Trends Cell Biol, 1998. 8(2): p. 65-71.
53. Zhang, X., et al., Structure of the AAA ATPase p97. Mol Cell, 2000. 6(6): p.
1473-84.
54. Roy, L., et al., Role of p97 and syntaxin 5 in the assembly of transitional
endoplasmic reticulum. Mol Biol Cell, 2000. 11(8): p. 2529-42.
55. Yamada, T., et al., p97 ATPase, an ATPase involved in membrane fusion,
interacts with DNA unwinding factor (DUF) that functions in DNA
replication. FEBS Lett, 2000. 466(2-3): p. 287-91.
56. Lavoie, C., et al., Tyrosine phosphorylation of p97 regulates transitional
endoplasmic reticulum assembly in vitro. Proc Natl Acad Sci U S A, 2000.
97(25): p. 13637-42.
57. Rabinovich, E., et al., AAA-ATPase p97/Cdc48p, a cytosolic chaperone
required for endoplasmic reticulum-associated protein degradation. Mol
Cell Biol, 2002. 22(2): p. 626-34.
58. Lin, A., S. Patel, and M. Latterich, Regulation of organelle membrane
fusion by Pkc1p. Traffic, 2001. 2(10): p. 698-704.
59. Dai, R.M., et al., Involvement of valosin-containing protein, an ATPase
Co-purified with IkappaBalpha and 26 S proteasome, in
97
ubiquitin-proteasome-mediated degradation of IkappaBalpha. J Biol Chem,
1998. 273(6): p. 3562-73.
60. Dai, R.M. and C.C. Li, Valosin-containing protein is a multi-ubiquitin
chain-targeting factor required in ubiquitin-proteasome degradation. Nat
Cell Biol, 2001. 3(8): p. 740-4.
61. Wang, Q., et al., D1 ring is stable and nucleotide-independent, whereas D2
ring undergoes major conformational changes during the ATPase cycle of
p97-VCP. J Biol Chem, 2003. 278(35): p. 32784-93.
62. Egerton, M. and L.E. Samelson, Biochemical characterization of
valosin-containing protein, a protein tyrosine kinase substrate in
hematopoietic cells. J Biol Chem, 1994. 269(15): p. 11435-41.
63. Madeo, F., et al., Tyrosine phosphorylation regulates cell cycle-dependent
nuclear localization of Cdc48p. Mol Biol Cell, 1998. 9(1): p. 131-41.
64. Li, Q. and I.M. Verma, NF-kappaB regulation in the immune system. Nat
Rev Immunol, 2002. 2(10): p. 725-34.
65. Chen, L.F. and W.C. Greene, Shaping the nuclear action of NF-kappaB.
Nat Rev Mol Cell Biol, 2004. 5(5): p. 392-401.
66. Karin, M. and Y. Ben-Neriah, Phosphorylation meets ubiquitination: the
control of NF-[kappa]B activity. Annu Rev Immunol, 2000. 18: p. 621-63.
67. Ghosh, S. and M. Karin, Missing pieces in the NF-kappaB puzzle. Cell,
2002. 109 Suppl: p. S81-96.
68. Baeuerle, P.A. and D. Baltimore, NF-kappa B: ten years after. Cell, 1996.
87(1): p. 13-20.
69. Chen, F., V. Castranova, and X. Shi, New insights into the role of nuclear
factor-kappaB in cell growth regulation. Am J Pathol, 2001. 159(2): p.
387-97.
70. Asai, T., et al., VCP (p97) regulates NFkappaB signaling pathway, which is
important for metastasis of osteosarcoma cell line. Jpn J Cancer Res, 2002.
93(3): p. 296-304.
71. Yamamoto, S., et al., Expression of valosin-containing protein in colorectal
carcinomas as a predictor for disease recurrence and prognosis. Clin
Cancer Res, 2004. 10(2): p. 651-7.
72. Yamamoto, S., et al., Expression level of valosin-containing protein is
strongly associated with progression and prognosis of gastric carcinoma. J
Clin Oncol, 2003. 21(13): p. 2537-44.
73. Yamamoto, S., et al., Elevated expression of valosin-containing protein (p97)
in hepatocellular carcinoma is correlated with increased incidence of tumor
recurrence. J Clin Oncol, 2003. 21(3): p. 447-52.
98
74. Zhang, S.H., et al., Serine phosphorylation-dependent association of the
band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3beta
protein. J Biol Chem, 1997. 272(43): p. 27281-7.
75. Morrison, D., 14-3-3: modulators of signaling proteins? Science, 1994.
266(5182): p. 56-7.
76. Aitken, A., et al., 14-3-3 proteins: biological function and domain structure.
Biochem Soc Trans, 1995. 23(3): p. 605-11.
77. Jin, D.Y., et al., Function of 14-3-3 proteins. Nature, 1996. 382(6589): p.
308.
78. Reuther, G.W. and A.M. Pendergast, The roles of 14-3-3 proteins in signal
transduction. Vitam Horm, 1996. 52: p. 149-75.
79. Shinkai, F. and T. Isobe, [14-3-3 protein family: the structure and function
in cell signaling pathway]. Tanpakushitsu Kakusan Koso, 1996. 41(4): p.
313-26.
80. Robinson, K., et al., Mechanism of inhibition of protein kinase C by 14-3-3
isoforms. 14-3-3 isoforms do not have phospholipase A2 activity. Biochem J,
1994. 299(Pt 3): p. 853-61.
81. Meller, N., et al., Direct interaction between protein kinase C theta (PKC
theta) and 14-3- 3 tau in T cells: 14-3-3 overexpression results in inhibition
of PKC theta translocation and function. Mol Cell Biol, 1996. 16(10): p.
5782-91.
82. Zhang, L., J. Chen, and H. Fu, Suppression of apoptosis signal-regulating
kinase 1-induced cell death by 14-3-3 proteins. Proc Natl Acad Sci U S A,
1999. 96(15): p. 8511-5.
83. Muslin, A.J., et al., Interaction of 14-3-3 with signaling proteins is mediated
by the recognition of phosphoserine. Cell, 1996. 84(6): p. 889-97.
84. Roy, S., et al., 14-3-3 facilitates Ras-dependent Raf-1 activation in vitro and
in vivo. Mol Cell Biol, 1998. 18(7): p. 3947-55.
85. Thorson, J.A., et al., 14-3-3 proteins are required for maintenance of Raf-1
phosphorylation and kinase activity. Mol Cell Biol, 1998. 18(9): p. 5229-38.
86. Tzivion, G., Z. Luo, and J. Avruch, A dimeric 14-3-3 protein is an essential
cofactor for Raf kinase activity. Nature, 1998. 394(6688): p. 88-92.
87. Dalal, S.N., et al., Cytoplasmic localization of human cdc25C during
interphase requires an intact 14-3-3 binding site. Mol Cell Biol, 1999. 19(6):
p. 4465-79.
88. Kumagai, A. and W.G. Dunphy, Binding of 14-3-3 proteins and nuclear
export control the intracellular localization of the mitotic inducer Cdc25.
Genes Dev, 1999. 13(9): p. 1067-72.
99
89. Lopez-Girona, A., et al., Nuclear localization of Cdc25 is regulated by DNA
damage and a 14-3-3 protein. Nature, 1999. 397(6715): p. 172-5.
90. Zhang, S., H. Xing, and A.J. Muslin, Nuclear localization of protein kinase
U-alpha is regulated by 14-3-3. J Biol Chem, 1999. 274(35): p. 24865-72.
91. Brunet, A., et al., Akt promotes cell survival by phosphorylating and
inhibiting a Forkhead transcription factor. Cell, 1999. 96(6): p. 857-68.
92. Zha, J., et al., Serine phosphorylation of death agonist BAD in response to
survival factor results in binding to 14-3-3 not BCL-X(L). Cell, 1996. 87(4):
p. 619-28.
93. Fu, H., R.R. Subramanian, and S.C. Masters, 14-3-3 proteins: structure,
function, and regulation. Annu Rev Pharmacol Toxicol, 2000. 40: p.
617-47.
94. Sun, C.X., V.A. Robb, and D.H. Gutmann, Protein 4.1 tumor suppressors:
getting a FERM grip on growth regulation. J Cell Sci, 2002. 115(Pt 21): p.
3991-4000.
95. Bretscher, A., Regulation of cortical structure by the ezrin-radixin-moesin
protein family. Curr Opin Cell Biol, 1999. 11(1): p. 109-16.
96. Muller, J.M., et al., The mouse p97 (CDC48) gene. Genomic structure,
definition of transcriptional regulatory sequences, gene expression, and
characterization of a pseudogene. J Biol Chem, 1999. 274(15): p. 10154-62.
97. Wadham, C., et al., Translocation of protein tyrosine phosphatase
Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell
proliferation. J Cell Sci, 2000. 113 ( Pt 17): p. 3117-23.
98. Ragimbeau, J., et al., The receptor interaction region of Tyk2 contains a
motif required for its nuclear localization. J Biol Chem, 2001. 276(33): p.
30812-8.
99. Parganas, E., et al., Jak2 is essential for signaling through a variety of
cytokine receptors. Cell, 1998. 93(3): p. 385-95.
100. Harris, B.Z. and W.A. Lim, Mechanism and role of PDZ domains in
signaling complex assembly. J Cell Sci, 2001. 114(Pt 18): p. 3219-31.
101. Brummelkamp, T.R., R. Bernards, and R. Agami, A system for stable
expression of short interfering RNAs in mammalian cells. Science, 2002.
296(5567): p. 550-3.
102. Black, R.A., et al., A metalloproteinase disintegrin that releases
tumour-necrosis factor-alpha from cells. Nature, 1997. 385(6618): p.
729-33.
103. Zheng, Y., J. Schlondorff, and C.P. Blobel, Evidence for regulation of the
tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine
100
phosphatase PTPH1. J Biol Chem, 2002. 277(45): p. 42463-70.
104. Peschon, J.J., et al., An essential role for ectodomain shedding in
mammalian development. Science, 1998. 282(5392): p. 1281-4.
105. Reddy, P., et al., Functional analysis of the domain structure of tumor
necrosis factor-alpha converting enzyme. J Biol Chem, 2000. 275(19): p.
14608-14.
106. Biermer, M., R. Puro, and R.J. Schneider, Tumor necrosis factor alpha
inhibition of hepatitis B virus replication involves disruption of capsid
Integrity through activation of NF-kappaB. J Virol, 2003. 77(7): p. 4033-42.
107. Gallucci, R.M., et al., TNF-alpha regulates transforming growth
factor-alpha expression in regenerating murine liver and isolated
hepatocytes. J Immunol, 2000. 164(2): p. 872-8.
108. Mantovani, A., et al., Decoy receptors: a strategy to regulate inflammatory
cytokines and chemokines. Trends Immunol, 2001. 22(6): p. 328-36.
109. Mukhopadhyay, A., S.K. Manna, and B.B. Aggarwal,
Pervanadate-induced nuclear factor-kappaB activation requires tyrosine
phosphorylation and degradation of IkappaBalpha. Comparison with tumor
necrosis factor-alpha. J Biol Chem, 2000. 275(12): p. 8549-55.
110. Li, N. and M. Karin, Ionizing radiation and short wavelength UV activate
NF-kappaB through two distinct mechanisms. Proc Natl Acad Sci U S A,
1998. 95(22): p. 13012-7.
111. Singh, S., B.G. Darnay, and B.B. Aggarwal, Site-specific tyrosine
phosphorylation of IkappaBalpha negatively regulates its inducible
phosphorylation and degradation. J Biol Chem, 1996. 271(49): p. 31049-54.
112. Takada, Y., et al., Hydrogen peroxide activates NF-kappa B through
tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of
p65: evidence for the involvement of I kappa B alpha kinase and Syk
protein-tyrosine kinase. J Biol Chem, 2003. 278(26): p. 24233-41.
113. Mahboubi, K., W. Young, and N.R. Ferreri, Tyrosine
phosphatase-dependent/tyrosine kinase-independent induction of nuclear
factor-kappa B by tumor necrosis factor-alpha: effects on prostaglandin
endoperoxide synthase-2 mRNA accumulation. J Pharmacol Exp Ther,
1998. 285(2): p. 862-8.
114. You, M., et al., Modulation of the nuclear factor kappa B pathway by Shp-2
tyrosine phosphatase in mediating the induction of interleukin (IL)-6 by
IL-1 or tumor necrosis factor. J Exp Med, 2001. 193(1): p. 101-10.
115. Michalopoulos, G.K. and M.C. DeFrances, Liver regeneration. Science,
1997. 276(5309): p. 60-6.
101
116. Santoro, M.G., A. Rossi, and C. Amici, NF-kappaB and virus infection:
who controls whom. Embo J, 2003. 22(11): p. 2552-60.
117. Surabhi, R.M. and R.B. Gaynor, RNA interference directed against viral
and cellular targets inhibits human immunodeficiency Virus Type 1
replication. J Virol, 2002. 76(24): p. 12963-73.
118. Amici, C., et al., Activation of I kappa b kinase by herpes simplex virus type
1. A novel target for anti-herpetic therapy. J Biol Chem, 2001. 276(31): p.
28759-66.
119. 榮總醫訊
120. 國立陽明大學黃秋容博士論文B 型肝炎病毒核心蛋白與細胞蛋白之交
互作用
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊