跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 15:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏宏穆
研究生(外文):Hung-Mu Wei
論文名稱:刺激人類乳癌細胞CD44接受器所調節與轉移相關之基質金屬蛋白酶基因表現之探討
論文名稱(外文):CD44 Cross-linking Regulated Metastatic Related-Matrix Metalloproteinase Genes Expression in Breast Tumor Cells
指導教授:王懷詩
指導教授(外文):Hwai-Shi Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:解剖暨細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:58
中文關鍵詞:CD44ICDMT1-MMP乳癌轉移
外文關鍵詞:CD44ICDMT1-MMPbreast tumormigration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
CD44是一群穿越細胞膜的醣蛋白,已知其會參與許多細胞生理及病理的過程當中,包含:淋巴球返回、細胞遷移以及腫瘤細胞的生長與轉移等。基質金屬蛋白酶(Matrix metalloproteinase)是一群依賴金屬鋅的酵素,其在一些胞外基質的分解過程中,也扮演了相當重要的角色。因此CD44與MMP在腫瘤細胞的轉移中皆相當的重要。我們藉由cDNA microarray的分析,將一些受CD44 cross-linking影響而改變其表現與轉移相關基因整理出來,結果顯示乳癌細胞其type Ⅳ、Ⅵ collagen、TIMP-1(tissue inhibitor of metalloproteinase)以及MT1-MMP(membrane type-1 MMP)等基因在經CD44 cross-linking後,皆會以不同程度增加其表現量,而我們也以RT-PCR及real-time Q-PCR進一步確認MT1-MMP的表現量確有增加。藉由蛋白酶抑制劑MG-132的前處理,可以成功抑制CD44ICD的切割及轉移至細胞核內,而減少因刺激CD44所增加MT1-MMP其mRNA的表現。除此之外,CD44ICD會在受刺激後轉移至細胞核中,可能扮演一個轉錄活化因子的角色,來活化MT1-MMP的表現。由此可進一步證明CD44以及MT1-MMP在腫瘤轉移機制當中所扮演之角色。而CD44ICD可能是藉由轉移至細胞核內扮演標的基因MT1-MMP的轉錄因子,來調節由CD44所主導的癌細胞轉移。
CD44 is a family of transmembrane glycoprotein and implicates in a wide variety of physiological and pathological processes, including lymphocyte homing, cell migration, tumor cell growth and metastasis.
Metalloproteinases (MMPs), a family of zinc-dependent proteolytic enzymes, play an important role in degradation of extracullular matrix (ECM). In concert with the expression of CD44 and MMPs is important for tumor metastasis. By using cDNA microarray analysis, subsets of metastasis related genes that changed in expression after CD44 cross-linking were categorized. The data showed that CD44 cross-linking can upregulate the expression of type IV and VI collagens, tissue inhibitor of metalloproteinase (TIMP)-1, and membrane type 1 matrix metalloproteinase (MT1- MMP). Moreover, one of CD44 cross-linking modulated gene, MT1-MMP, were also confirmed by RT-PCR and real-time Q-PCR. A protease inhibitor, MG-132, which can block the cleavage of CD44ICD and its translocation to the nucleus, successfully reduce the MT1-MMP mRNA expression. These results suggested that the stimulation of CD44 plays an important role in tumor metastasis and CD44ICD may translocate to the nucleus as a transcription factor for a possible gene, MT1-MMP, to regulate CD44-dependent tumor cell migration.
Albelda SM. (1993). Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest. 68(1):4-17.
Alexander CM, Howard EW, Bissell MJ, Werb Z. (1996). Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J Cell Biol. 135(6 Pt 1):1669-77.
Bazil V, Strominger JL. (1994). Metalloprotease and serine protease are involved in cleavage of CD43, CD44, and CD16 from stimulated human granulocytes. Induction of cleavage of L-selectin via CD16. J Immunol. 152(3):1314-22.
Bennett, KL, Modrell B, Greenfield B, Bartolazzi A, Stamenkovic I, Peach R, Jackson DG, Spring F, and Aruffo A. (1995). Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons. J Cell Biol. 131, 1623-1633.
Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2(10):737-44.
Blobe GC, Schiemann WP, Lodish HF. (2000). Role of transforming growth factor beta in human disease. N Engl J Med. 342(18):1350-8.
Bourguignon LY, Zhu H, Shao L, and Chen YW. (2000). Ankyrin-Tiam1 interaction promotes Rac1 signaling and metastatic breast tumor cell invasion and migration. J Cell Biol. 150, 177-191.
Bourguignon LY, Zhu H, Shao L, Chen YW. (2001). CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem. 276(10):7327-36
Chambers AF, Matrisian LM. (1997). Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 89(17):1260-70.
Chirgwin JM, Guise TA. (2000). Molecular mechanisms of tumor-bone interactions in osteolytic metastases. Crit Rev Eukaryot Gene Expr. 10(2):159-78.
Christofori G, Semb H. (1999). The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci. 24(2):73-6.
Colombatti A, Hughes EN, Taylor BA, and August JT (1982). Gene for a major cell surface glycoprotein of mouse macrophages and other phagocytic cells is on chromosome. Proc Natl Acad Sci U S A. 79(6):1926-9.
Coussens LM, Tinkle CL, Hanahan D, Werb Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 103(3):481-90.
Culty M, Nguyen HA, Underhill CB. (1992). The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol. 116(4):1055-62.
Dalchau R, Kirkley J, Fabre JW. Monoclonal antibody to a human leukocyte-specific membrane glycoprotein probably homologous to the leukocyte-common (L-C) antigen of the rat. Eur J Immunol. 10(10):737-44.
Dong Z, Kumar R, Yang X, Fidler IJ. (1997). Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell. 88(6):801-10.
Droll A, Dougherty ST, Chiu RK, Dirks JF, McBride WH, Cooper DL, Dougherty GJ. (1995). Adhesive interactions between alternatively spliced CD44 isoforms. J Biol Chem. 270(19):11567-73.
Egeblad M, Werb Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2(3):161-74.
Fieber C, Baumann P, Vallon R, Termeer C, Simon JC, Hofmann M, Angel P, Herrlich P, Sleeman JP. (2004) Hyaluronan-oligosaccharide-induced transcription of metalloproteases. J Cell Sci. 15;117(Pt 2):359-67.
Fitzgerald KA, Bowie AG, Skeffington BS, O'Neill LA. (2000). Ras, protein kinase C zeta, and I kappa B kinases 1 and 2 are downstream effectors of CD44 during the activation of NF-kappa B by hyaluronic acid fragments in T-24 carcinoma cells. J Immunol. 164(4):2053-63.
Fogar P, Basso D, Pasquali C, De Paoli M, Sperti C, Roveroni G, Pedrazzoli S, Plebani M. (1997). Neural cell adhesion molecule (N-CAM) in gastrointestinal neoplasias. Anticancer Res. 17(2B):1227-30.
Fujii K, Tanaka Y, Hubscher S, Saito K, Ota T, Eto S. (1999). Cross-linking of CD44 on rheumatoid synovial cells up-regulates VCAM-1. J Immunol. 162(4):2391-8.
Fujisaki T, Tanaka Y, Fujii K, Mine S, Saito K, Yamada S, Yamashita U, Irimura T, Eto S. (1999). CD44 stimulation induces integrin-mediated adhesion of colon cancer cell lines to endothelial cells by up-regulation of integrins and c-Met and activation of integrins. Cancer Res. 59(17):4427-34.
Galvez BG, Matias-Roman S, Albar JP, Sanchez-Madrid F, Arroyo AG. (2001). Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J Biol Chem. 276(40):37491-500.
Goldstein LA, Butcher EC. (1990). Identification of mRNA that encodes an alternative form of H-CAM(CD44) in lymphoid and nonlymphoid tissues. Immunogenetics. 32(6):389-97.
Goldstein LA, Zhou DF, Picker LJ, Minty CN, Bargatze RF, Ding JF, Butcher EC. (1989). A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell. 56(6):1063-72.
Goodfellow PN, Banting G, Wiles MV, Tunnacliffe A, Parkar M, Solomon E, Dalchau R, Fabre JW. (1982). The gene, MIC4, which controls expression of the antigen defined by monoclonal antibody F10.44.2, is on human chromosome 11. Eur J Immunol. 12(8):659-63.
Hanahan D, Weinberg RA. (2000). The hallmarks of cancer. Cell. 100(1):57-70.
Hardingham TE, Fosang AJ. (1992). Proteoglycans: many forms and many functions. FASEB J. 6(3):861-70.
Hathcock KS, Hirano H, Murakami S, Hodes RJ. (1993). CD44 expression on activated B cells. Differential capacity for CD44-dependent binding to hyaluronic acid. J Immunol. 151(12):6712-22.
Haynes BF, Liao HX, Patton KL. (1991). The transmembrane hyaluronate receptor (CD44): multiple functions, multiple forms. Cancer Cells. 3(9):347-50.
Haynes BF, Telen MJ, Hale LP, Denning SM. (1989). CD44--a molecule involved in leukocyte adherence and T-cell activation. Immunol Today. 10(12):423-8.
Heldin CH, Miyazono K, ten Dijke P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390(6659):465-71.
Hiraoka N. Allen E. Apel IJ. Gyetko MR. Weiss SJ. (1998). Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell. 95(3):365-77.
Horst E, Meijer CJ, Radaszkiewicz T, Ossekoppele GJ, Van Krieken JH, Pals ST. (1990). Adhesion molecules in the prognosis of diffuse large-cell lymphoma: expression of a lymphocyte homing receptor (CD44), LFA-1 (CD11a/18), and ICAM-1 (CD54). Leukemia. 4(8):595-9.
Hua Q, Knudson CB, Knudson W. (1993). Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis. J Cell Sci. 106 (Pt 1):365-75.
Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M. (1999). Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis. 17(2):177-81.
Itoh Y, Takamura A, Ito N, Maru Y, Sato H, Suenaga N, Aoki T, Seiki M. (2001). Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J. 20(17):4782-93.
Jackson DG, Buckley J, Bell JI. (1992). Multiple variants of the human lymphocyte homing receptor CD44 generated by insertions at a single site in the extracellular domain. J Biol Chem. 267(7):4732-9.
Jalkanen S, Jalkanen M, Bargatze R, Tammi M, Butcher EC. (1988). Biochemical properties of glycoproteins involved in lymphocyte recognition of high endothelial venules in man. J Immunol. 141(5):1615-23.
Johnson JP. (1991). Cell adhesion molecules of the immunoglobulin supergene family and their role in malignant transformation and progression to metastatic disease. Cancer Metastasis Rev. 10(1):11-22.
Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M. (2001). Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol. 153(5):893-904.
Knauper V, Will H, Lopez-Otin C, Smith B, Atkinson SJ, Stanton H, Hembry RM, Murphy G. (1996). Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem. 271(29):17124-31.
Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V. (2000). Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol. 148(3):615-24.
Lacy BE, Underhill CB. (1987). The hyaluronate receptor is associated with actin filaments. J Cell Biol. 105(3):1395-404.
Liao HX, Levesque MC, Patton K, Bergamo B, Jones D, Moody MA, Telen MJ, Haynes BF. (1993). Regulation of human CD44H and CD44E isoform binding to hyaluronan by phorbol myristate acetate and anti-CD44 monoclonal and polyclonal antibodies. J Immunol. 151(11):6490-9.
Liotta LA, Steeg PS, Stetler-Stevenson WG. (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 64(2):327-36.
Lukashev ME, Werb Z. (1998). ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol. 8(11):437-41.
Massague J. (1998). TGF-beta signal transduction. Annu Rev Biochem. 67:753-91.
Massague J, Wotton D. (2000). Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 19(8):1745-54.
McCawley LJ, Matrisian LM. (2001). Tumor progression: defining the soil round the tumor seed. Curr Biol. Jan 9;11(1):R25-7.
Mignatti P, Rifkin DB. (1993). Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993 Jan;73(1):161-95.
Mitsiades N, Yu WH, Poulaki V, Tsokos M, Stamenkovic I. (2001). Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res. 61(2):577-81.
Mori H, Tomari T, Koshikawa N, Kajita M, Itoh Y, Sato H, Tojo H, Yana I, Seiki M. (2002). CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J. 21(15):3949-59.
Nagase H, Woessner JF Jr. (1999). Matrix metalloproteinases. J Biol Chem. 274(31):21491-4.
Nakamura H, Ueno H, Yamashita K, Shimada T, Yamamoto E, Noguchi M, Fujimoto N, Sato H, Seiki M, Okada Y. (1999). Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res. 59(2):467-73.
Naot D, Sionov RV, Ish-Shalom D. (1997). CD44: structure, function, and association with the malignant process. Adv Cancer Res. 71:241-319.
Neame SJ, Isacke CM. (1992). Phosphorylation of CD44 in vivo requires both Ser323 and Ser325, but does not regulate membrane localization or cytoskeletal interaction in epithelial cells. EMBO J. 11(13):4733-8.
Oft M, Heider KH, Beug H. (1998). TGF-beta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol. 8(23):1243-52.
Oertli B, Beck-Schimmer B, Fan X, Wuthrich RP. (1998). Mechanisms of hyaluronan-induced up-regulation of ICAM-1 and VCAM-1 expression by murine kidney tubular epithelial cells: hyaluronan triggers cell adhesion molecule expression through a mechanism involving activation of nuclear factor-kappa B and activating protein-1. J Immunol. 161(7):3431-7.
Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y. (1997). Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem. 272(4):2446-51.
Okamoto I, Kawano Y, Murakami D, Sasayama T, Araki N, Miki T, Wong AJ, Saya H. (2001). Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J Cell Biol. 155(5):755-62.
Okamoto I, Kawano Y, Tsuiki H, Sasaki J, Nakao M, Matsumoto M, Suga M, Ando M, Nakajima M, Saya H. (1999). CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration. Oncogene. 18(7):1435-46.
Pei D, Weiss SJ. (1996). Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem. 271(15):9135-40.
Saad S, Bendall LJ, James A, Gottlieb DJ, Bradstock KF. (2000). Induction of matrix metalloproteinases MMP-1 and MMP-2 by co-culture of breast cancer cells and bone marrow fibroblasts. Breast Cancer Res Treat. 63(2):105-15.
Sampson PM, Rochester CL, Freundlich B, Elias JA. (1992). Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase. J Clin Invest. 90(4):1492-503.
Sato,H., Takino,T., Okada,Y., Cao,J., Shinagawa,A., Yamamoto,E., and Seiki,M. (1994). A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61-65.
Sato T, Iwai M, Sakai T, Sato H, Seiki M, Mori Y, Ito A. (1999). Enhancement of membrane-type 1-matrix metalloproteinase (MT1-MMP) production and sequential activation of progelatinase A on human squamous carcinoma cells co-cultured with human dermal fibroblasts. Br J Cancer. 80(8):1137-43.
Screaton GR, Bell MV, Bell JI, Jackson DG. (1993). The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J Biol Chem. 268(17):12235-8.
Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. (1992). Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci U S A. 89(24):12160-4.
Seiki M. (1999). Membrane-type matrix metalloproteinases. APMIS. 107(1):137-43.
Seiki M. (2002). The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol. 14(5):624-32.
Seiki M, Mori H, Kajita M, Uekita T, Itoh Y. (2003). Membrane-type 1 matrix metalloproteinase and cell migration. Biochem Soc Symp. (70):253-62.
Sporn MB. (1996). The war on cancer. Lancet. 347(9012):1377-81.
Stamenkovic I, Aruffo A, Amiot M, Seed B. (1991). The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J. 10(2):343-8.
Stetler-Stevenson WG, Aznavoorian S, Liotta LA. (1993). Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 9:541-73.
Sugahara KN, Murai T, Nishinakamura H, Kawashima H, Saya H, Miyasaka M. (2003). Hyaluronan oligosaccharides induce CD44 cleavage and promote cell migration in CD44-expressing tumor cells. J Biol Chem. 278(34):32259-65.
Tobin SW, Douville K, Benbow U, Brinckerhoff CE, Memoli VA, Arrick BA. (2002). Consequences of altered TGF-beta expression and responsiveness in breast cancer: evidence for autocrine and paracrine effects. Oncogene. 21(1):108-18.
Toth M, Bernardo MM, Gervasi DC, Soloway PD, Wang Z, Bigg HF, Overall CM, DeClerck YA, Tschesche H, Cher ML, Brown S, Mobashery S, Fridman R. (2000). Tissue inhibitor of metalloproteinase (TIMP)-2 acts synergistically with synthetic matrix metalloproteinase (MMP) inhibitors but not with TIMP-4 to enhance the (Membrane type 1)-MMP-dependent activation of pro-MMP-2. J Biol Chem. 275(52):41415-23.
Toyama-Sorimachi N, Sorimachi H, Tobita Y, Kitamura F, Yagita H, Suzuki K, Miyasaka M. (1995). A novel ligand for CD44 is serglycin, a hematopoietic cell lineage-specific proteoglycan. Possible involvement in lymphoid cell adherence and activation. J Biol Chem. 270(13):7437-44.
Tryggvason K, Hoyhtya M, Pyke C. Type IV collagenases in invasive tumors. Breast Cancer Res Treat. 24(3):209-18.
Ueda J, Kajita M, Suenaga N, Fujii K, Seiki M. (2003). Sequence-specific silencing of MT1-MMP expression suppresses tumor cell migration and invasion: importance of MT1-MMP as a therapeutic target for invasive tumors. Oncogene. 22(54):8716-22.
Uekita T, Itoh Y, Yana I, Ohno H, Seiki M. (2001). Cytoplasmic tail-dependent internalization of membrane-type 1 matrix metalloproteinase is important for its invasion-promoting activity. J Cell Biol. 155(7):1345-56.
Ueno H, Nakamura H, Inoue M, Imai K, Noguchi M, Sato H, Seiki M, Okada Y. (1997). Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res. 57(10):2055-60.
Weber GF, Ashkar S, Glimcher MJ, Cantor H. (1996). Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science. 271(5248):509-12.
Will H, Atkinson SJ, Butler GS, Smith B, Murphy G. (1996). The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J Biol Chem. 271(29):17119-23.
Wu E, Mari BP, Wang F, Anderson IC, Sunday ME, Shipp MA. (2001). Stromelysin-3 suppresses tumor cell apoptosis in a murine model. J Cell Biochem. 82(4):549-55.
Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA. (1999). TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 103(2):197-206.
Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, Tsukita S, Tsukita S. (1998). Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol. 140(4):885-95.
Yu Q, Stamenkovic I. (1999). Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 13(1):35-48.
Yu Q, Stamenkovic I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 15;14(2):163-76.
Zahalka MA, Okon E, Gosslar U, Holzmann B, Naor D. (1995). Lymph node (but not spleen) invasion by murine lymphoma is both CD44- and hyaluronate-dependent. J Immunol. 154(10):5345-55.
Zucker S, Cao J, Chen WT. (2000). Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene. 19(56):6642-50.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊