跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳俊毅
研究生(外文):Chung-Yi Wu
論文名稱:甲基化DNA與組蛋白上特定官能基修飾之間的關係
論文名稱(外文):The relationship between DNA methylation and histone modification
指導教授:沈哲鯤沈哲鯤引用關係
指導教授(外文):Che-Kun James Shen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:遺傳學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:58
中文關鍵詞:甲基化DNA組蛋白
外文關鍵詞:DNA methylationhistone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Epigenetic代表任何不藉由改變DNA序列本身而能遺傳給下一代的現象稱之。一般相信它對於細胞內基因的表現、個體的發育及癌症的形成都有其貢獻。DNA甲基化、組蛋白的修飾、位子效應和RNAi等等都是它的範疇。而本篇論文的主題就是在研究甲基化DNA與組蛋白修飾之間的關係。DNA甲基化與組蛋白的修飾能促使染色體結構改變進而影響基因的表現。就最近的實驗結果顯示,DNA甲基化是組蛋白中H3甲基化的下游,而甲基化的DNA會被MBD蛋白辨認然後與其它蛋白結合形成histone deacetylase 複合體去改變組蛋白的修飾作用。這就是目前兩條甲基化DNA與組蛋白修飾之間的路徑。我們從基因資料庫中發現到四個基因【CLLD8、SETDB1、CG12196和R05D3.11】他們同時具有辨識甲基化DNA的domain和能甲基化組蛋白的domain。於是我們推測這可能是甲基化DNA與組蛋白修飾之間的另一條路徑。我們把這些基因的MBD表現在大腸桿菌的系統內然後用EMSA去測試它們的功能結果發現只有果蠅的基因CG12196 有功能,於是我們推論可能只有在果蠅中甲基化的DNA會藉由CG12196 這個基因去調節整體組蛋白甲基化。而這些基因能甲基化組蛋白的domain 我們也表現在大腸桿菌的系統中,然後藉由組蛋白甲基轉移實驗去測試其功能,結果我們發現他們都不具有把甲基轉移給組蛋白的能力。在未來我們打算把這些基因能甲基化組蛋白的domain 表現在baculoviruses的系統內在去測試它的是否具有把甲基轉移給組蛋白的功能。
Epigenetic means any heritable change in gene expression that is not caused by change in DNA sequence. As such it is believed to contribute to the gene expression in the cell and the normal processes of human development but also to aberrant disease states such as cancer. DNA methylation , histone modification , position-effect variegation and RNAi etc.. are all in this area. If we enhance understanding of the epigenetic will probably prove helpful diagnosis and treatment of some disease including cancer. Here we want to know the relationship between DNA methylation and histone modification.
DNA methylation and histone modification promoter change chromatin structure that may affect gene expression. In the recent experiments, they reveal the DNA methylation is downstream of the H3 methylation and DNA methylation can be recognized by the MBD, then recruit histone deacetylase complex to change the modification of the histone. They are two links between the sequential events of histone modification and DNA methylation. Here, we search database and find some genes (CLLD8, SETDB1,CG12196 and R05D3.11) containing both methyl CpG-binding domain and pre-SET/SET domain and they may be other link between DNA methylation and histone modification.In this study, we express their methyl CpG-binding domains in the E.coli system ,then testing their function by EMSA ; only the Drosophila gene CG12196 has the interaction. It reveals the Drosophila gene CG12196 may modulate the whole of histone methylation by the DNA methylation but other's gene can not. And we also express their pre-SET/SET domain in the E.coli system , then testing it's activity using histone methyltransferase assay ; but all genes do not have the activity.In the future, we will express their pre-SET/SET domain in the baculoviruses system and try again it have activity or not.
1. A. Weissbach. A chronicle of DNA methylation (1948-1975). EXS 64:1-10, 1993.
2 .J. Christodoulou and L. S. Weaving. MECP2 and beyond: phenotype-genotype correlations in Rett syndrome. J.Child Neurol. 18 (10):669-674, 2003.
3. A. M. Kerr and D. Ravine. Review article: breaking new ground with Rett syndrome. J.Intellect.Disabil.Res. 47 (Pt 8):580-587, 2003.
4 .R. E. Amir, den Veyver Van, I, M. Wan, C. Q. Tran, U. Francke, and H. Y. Zoghbi. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat.Genet. 23 (2):185-188, 1999.
5. Q. Tao, H. Huang, T. M. Geiman, C. Y. Lim, L. Fu, G. H. Qiu, and K. D. Robertson. Defective de novo methylation of viral and cellular DNA sequences in ICF syndrome cells. Hum.Mol.Genet. 11 (18):2091-2102, 2002.
6. R. S. Hansen, C. Wijmenga, P. Luo, A. M. Stanek, T. K. Canfield, C. M. Weemaes, and S. M. Gartler. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc.Natl.Acad.Sci.U.S.A 96 (25):14412-14417, 1999.
7. K. D. Robertson and A. P. Wolffe. DNA methylation in health and disease. Nat.Rev.Genet. 1 (1):11-19, 2000.
8. B. Genc, H. Muller-Hartmann, M. Zeschnigk, H. Deissler, B. Schmitz, F. Majewski, A. von Gontard, and W. Doerfler. Methylation mosaicism of 5''-(CGG)(n)-3'' repeats in fragile X, premutation and normal individuals. Nucleic Acids Res. 28 (10):2141-2152, 2000.
9. B. R. Migeon. Concerning the role of X-inactivation and DNA methylation in fragile X syndrome. Am.J.Med.Genet. 43 (1-2):291-298, 1992.
10. R. Singal and G. D. Ginder. DNA methylation. Blood 93 (12):4059-4070, 1999.
11. G. Strathdee and R. Brown. Epigenetic cancer therapies: DNA methyltransferase inhibitors. Expert.Opin.Investig.Drugs 11 (6):747-754, 2002.
12. R. R. Meehan, J. D. Lewis, S. McKay, E. L. Kleiner, and A. P. Bird. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58 (3):499-507, 1989.
13. Hendrich, B., and A. Bird. Identification and characterization of a family of mammalian methyl-CpG binding protein. Mol. Cell. Biol 18: 6538-6547. 1998
14. X. Nan, H. H. Ng, C. A. Johnson, C. D. Laherty, B. M. Turner, R. N. Eisenman, and A. Bird. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393 (6683):386-389, 1998.
15. F. Yu, J. Thiesen, and W. H. Stratling. Histone deacetylase-independent transcriptional repression by methyl-CpG-binding protein 2. Nucleic Acids Res. 28 (10):2201-2206, 2000.
16 K. Luger, T. J. Rechsteiner, A. J. Flaus, M. M. Waye, and T. J. Richmond. Characterization of nucleosome core particles containing histone proteins made in bacteria. J.Mol.Biol. 272 (3):301-311, 1997.
17 K. Luger, A. W. Mader, R. K. Richmond, D. F. Sargent, and T. J. Richmond. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389 (6648):251-260, 1997.
18. Gary Felsenfeld* & Mark Groudine Controlling
the double helix. Nature VOL 421 23 JANUARY 2003 448-453 2003
19. H. Im, J. A. Grass, H. M. Christensen, A. Perkins, and E. H. Bresnick. Histone deacetylase-dependent establishment and maintenance of broad low-level histone acetylation within a tissue-specific chromatin domain. Biochemistry 41 (51):15152-15160, 2002.
20. Y. Yamashita, M. Shimada, N. Harimoto, T. Rikimaru, K. Shirabe, S. Tanaka, and K. Sugimachi. Histone deacetylase inhibitor trichostatin A induces cell-cycle arrest/apoptosis and hepatocyte differentiation in human hepatoma cells. Int.J.Cancer 103 (5):572-576, 2003.
21. A. H. Peters, D. O''Carroll, H. Scherthan, K. Mechtler, S. Sauer, C. Schofer, K. Weipoltshammer, M. Pagani, M. Lachner, A. Kohlmaier, S. Opravil, M. Doyle, M. Sibilia, and T. Jenuwein. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107 (3):323-337, 2001.
22. A. H. Peters, J. E. Mermoud, D. O''Carroll, M. Pagani, D. Schweizer, N. Brockdorff, and T. Jenuwein. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat.Genet. 30 (1):77-80, 2002.
23. S. Koizume, K. Tachibana, T. Sekiya, S. Hirohashi, and M. Shiraishi. Heterogeneity in the modification and involvement of chromatin components of the CpG island of the silenced human CDH1 gene in cancer cells. Nucleic Acids Res. 30 (21):4770-4780, 2002.
24. T. Hashimshony, J. Zhang, I. Keshet, M. Bustin, and H. Cedar. The role of DNA methylation in setting up chromatin structure during development. Nat.Genet. 34 (2):187-192, 2003.
25 Y. Wang, W. Fischle, W. Cheung, S. Jacobs, S. Khorasanizadeh, and C. D. Allis. Beyond the double helix: writing and reading the histone code. Novartis.Found.Symp. 259:3-17, 2004.
26. J. E. Sutherland and M. Costa. Epigenetics and the environment. Ann.N.Y.Acad.Sci. 983:151-160, 2003.
27. J. P. Jackson, A. M. Lindroth, X. Cao, and S. E. Jacobsen. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416 (6880):556-560, 2002.
28. H. Tamaru and E. U. Selker. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414 (6861):277-283, 2001.
29. I. Ben Porath and H. Cedar. Epigenetic crosstalk. Mol.Cell 8 (5):933-935, 2001.
30. S. Rea, F. Eisenhaber, D. O''Carroll, B. D. Strahl, Z. W. Sun, M. Schmid, S. Opravil, K. Mechtler, C. P. Ponting, C. D. Allis, and T. Jenuwein. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406 (6796):593-599, 2000.
31 D. C. Schultz, K. Ayyanathan, D. Negorev, G. G. Maul, and F. J. Rauscher, III. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16 (8):919-932, 2002.
32. F. Fuks, P. J. Hurd, D. Wolf, X. Nan, A. P. Bird, and T. Kouzarides. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J.Biol.Chem. 278 (6):4035-4040, 2003.
33. N. Fujita, S. Watanabe, T. Ichimura, S. Tsuruzoe, Y. Shinkai, M. Tachibana, T. Chiba, and M. Nakao. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J.Biol.Chem. 278 (26):24132-24138, 2003.
34. KARIM RODER, MING-SHIU HUNG, TAI-LIN LEE, TZU-YANG LIN, HENGY XIAO,KEN-ICHI ISOBE, JYH-LYH JUANG, AND C.-K. JAMES SHEN.Transcriptional Repression by Drosophila Methyl-CpG-Binding Proteins. MOLECULAR AND CELLULAR BIOLOGY,Oct. 2000, p. 7401–7409
35. Gary Felsenfeld & Mark Groudine. Controlling
the double helixl.NATURE VOL 421 23 JANUARY 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top