跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 23:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴賢勇
研究生(外文):Hsien Yong Lai
論文名稱:正壓呼吸誘發之動脈壓變異性之生理分析與臨床運用
論文名稱(外文):Physiologic Analysis and Clinical Applications of Positive-Pressure Ventiation Induced Variations of Arterial Pressure
指導教授:郭博昭郭博昭引用關係楊靜修楊靜修引用關係
指導教授(外文):Terry BJ KuoCherry CH Yang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:105
中文關鍵詞:動脈壓變異性呼吸
外文關鍵詞:arterial blood pressurevariabilityrespiration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
正壓呼吸誘發之動脈壓變異性之生理分析與臨床運用
本論文的研究主題為探討因正壓呼吸所誘發的動脈壓變異性之基礎生理分析與臨床人體運用。傳統上動脈壓的變異性被區分為血管運動和與呼吸相關兩大類。其中與呼吸相關,尤其是正壓呼吸所誘發之動脈壓變異性,是本論文的研究重心。麻醉學界曾有研究者發現在全身麻醉,肌肉鬆弛並接受人工機械呼吸的情況下,正壓呼吸所誘發之動脈壓變異性和動物體的全身血量呈現極高的負相關性。進一步完整評估後,Perel等人認為因正壓呼吸所造成的收縮壓變異性 (systolic pressure variation, SPV) 可作為一個方便,而且靈敏的低血量指標。近年來由於電腦的普及,頻譜分析技術已廣泛地運用在動脈壓變異性的研究。呼吸相關的動脈壓變異性 (respiratory-related arterial pressure variability, RAPV) 在頻譜分析上稱為呼吸成份 ,且由於其頻率在正常狀態下較血管運動成份為高,因此又習慣被稱為高頻成份。近年來我們的實驗室已證實,於全身麻醉,並給予機械式人工呼吸的大白鼠,RAPV與心臟交感神經活性有關。因此,麻醉學上的SPV與生理學上的RAPV,是否存在著很高的相關性,亦或甚至彼此代表的是相同的生理意義,是個相當有趣而值得進一步研究與探討的問題。
Physiologic Analysis and Clinical Applications of Positive-Pressure Ventilation Induced Variations of Arterial Pressure
The purpose of this dissertation is to decipher the physiologic analysis and clinical applications of positive-pressure ventilation induced variations of arterial pressure. The fluctuations in systemic arterial pressure (SAP) have been traditionally classified into two groups, e.g. vasomotor-related and respiratory-related components. The respiratory-related component, especially induced by positive-pressure ventilation, is the main research purpose of this dissertation. Previous studies have revealed that positive-pressure ventilation induced systolic pressure variations (SPV) was negatively correlated with the total blood volume status in anesthetized, paralyzed and mechanically ventilated animals during graded blood loss. After further evaluation, Perel et al suggested that SPV may be a easy and sensitive indicator of hypovolemia during graded hemorrhage. Due to the great progress in computer science, spectral analysis has been broadly used in the investigation of arterial pressure variability. Respiratory-related arterial pressure variability (RAPV) was termed as respiratory component in spectral analysis; and due to its higher frequency range than that of vasomotor component in normal condition, RAPV was also called high frequency (HF) component. Our previous studies have demonstrated that RAPV may be a sensitive indicator of cardiac sympathetic activity in anesthetized, paralyzed and mechanically ventilated rats. Thus, whether SPV in time domain and RAPV in frequency domain show high correlation, even they may represent the same physiologic phenomenon, has still not been investigated. It is interesting and worth further investigation.
1. Guyton AC, Harris JW. Pressorecptor-autonomic oscillation: a probable cause of vasomotor waves. Am J Physiol 1951; 165: 158-166.
2. Hales S. Statistical Essays: Containing Haemastaticks. London, Innys, Manby and Woodward 1733; vol 2.
3. Schweitzer A. Rhythmical fluctuactions of the arterial blood pressure. J Physiol 1945; 104, Suppl.: 25P-26P.
4. Innes JA, De Cort SC, Kox W, Guz A. Within-breath modulation of left ventricular function during normal breathing and positive-pressure ventilation in man. J Physiol 1993; 460: 487-502.
5. Dornhost AC, Howard P, Leathart GL. Respiratory variations in blood pressure. Circulation 1952; 6: 553-558.
6. Wise RA, Robotham JL, Summer WR. Effects of spontaneous ventilation on the circulation. Lung 1981; 159: 175-186.
7. Parsons GH, Green JF. Mechanisms of pulsus paradoxus in upper airway obstruction. J Appl Physiol 1978; 45: 598-603.
8. Robotham JL, Lixfeld W, Holland L, MacGregor D, Bryan AC, Rabson J. Effects of respiration on cardiac performance. J Appl Physiol 1978; 44: 703-709
9. Robotham JL, Mitzner W. A model of the effects of respiration on left ventricular performance. J Appl Physiol 1979; 46: 411-418.
10. Robotham JL, Rabson J, Permutt S, Bromberger-Barnea B. Left ventricular hemodynamics during respiration. J Appl Physiol 1979; 47: 1295-1303.
11. Buda AJ, Pinsky MR, Ingels NB, Jr Daughters GT II, Stinson EB, Alderman EL. Effect of intrathoracic pressure on left ventricular performance. New Engl J Med 1979; 301: 453-459.
12. Peters J, Fraser C, Stuart RS, Baumgartner W, Robotham JL. Negative intrathoracic pressure decreases independently left ventricular filling and emptying. Am J Physiol 1989; 257: H120-H131.
13. Cahoon DH, Michael IE, Johnson, V. Respiratory modification of the cardiac output. Am J Physiol 1941; 133: 642-650.
14. Wead WB, Norton JF. Effects of intrapleural pressure changes on canine left ventricular function. J Appl Physiol 1981; 50: 1027-1035.
15. Brinker JA, Weiss JL, Lappė DL, Barson JL, Summer WR, Permutt S, Weisfeldt ML. Leftward septal displacement during right ventricular loading in man. Circulation 1980; 61: 626-633.
16. Olsen CO, Tyson GS, Maier GW, Davis JW, Rankin JS. Diminished stroke volume during inspiration: a reverse thoracic pump. Circulation 1985; 72: 668-679.
17. Pinsky MR. Cardiovascular effects of ventilatory support and withdrawal. Anesth Analg 1994; 79: 567-576.
18. Massumi RA, Mason DT, Vera Z, Zelis R, Otero J, Amsterdam E. Reversed pulsus paradoxus. New Engl J Med 1973; 289: 1272-1275.
19. Jardin FJ, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP. Cyclic changes in arterial pulse during respiratory support. Circulation 1983; 68: 266-274.
20. Scharf SM, Brown R, Saunders N, Green LH. Hemodynamic effects of positive-pressure inflation. J Appl Physiol 1980; 49, 124-131.
21. Prewitt RM, Wood LDH. Effect of positive end-expiratory pressure on ventilatory function in dogs. Am J Physiol 1979; 236: H534-H544.
22. Culver BH, Marini JJ, Butler J. Lung volume and pleural pressure effects on ventricular function. J Appl Physiol 1981; 50: 630-635.
23. Wallis TW, Robotham JL, Compean R, Kindred MK. Mechanical heart-lung interaction with positive end-expiratory pressure. J Appl Physiol 1983; 54: 1039-1047.
24. Rankin JS, Olsen CO, Arentzen CE, Tyson GS, Maier G, Smith PK, Hammon JW, Jr Davis JW, McHale PA, Anderson RW, Sabiston DC Jr. The effects of airway pressure on cardiac function in intact dogs and man. Circulation 1982; 66, 108-120.
25. Adrian ED, Bronk DW, Phillips G. Discharges in mammalian sympathetic nerves. J Physiol 1932; 74: 115-133.
26. Connelly CA, Wurster RD. Sympathetic rhythms during hyperventilation-induced apnea. Am J Physiol 1985; 249: R424-R431.
27. Ashton JH, Cassidy SS. Reflex depression of cardiovascular function during lung inflation. J Appl Physiol 1985; 58: 137-145.
28. Coyle JP, Teplick RS, Long MC, Davison JK. Respiratory variations in systemic arterial pressure as an indicator of volume status. Anesthesiology 1983; 59: A53.
29. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 1987; 67: 498-502.
30. Pizov R, Ya’ari Y, Perel, A. Systolic pressure variation is greater during hemorrhage than during sodium nitroprusside-induced hypotension in ventilated dogs. Anesth Analg 1988; 67: 170-174.
31. Szold A, Pizov R, Segal E, Perel A. The effect of tidal volume and intravascular volume state on systemic pressure variation in ventilated dogs. Intensive Care Med 1989; 15: 368-371.
32. Rooke GA, Schwid HA, Shapira Y. The effect of graded hemorrhage and intravascular volume replacement on systolic pressure variation in humans during mechanical and spontaneous ventilation. Anesth Analg 1995; 80: 925-932.
33. Pizov R, Cohen M, Weiss Y, Segal E, Cotev S, Perel A. Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med 1996; 24: 1381-1387.
34. Ornstein E, Eidelman LA, Drenger B, Elami A, and Pizov R. Systolic pressure variation predicts the response to acute blood loss. J Clin Anesth 1998; 10: 137-140.
35. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 1998; 89: 1311-1321.
36. Michard F, Chemla D, Richard C, Wysocki M, Pinsky MR, Lecarpentier Y, Teboul JL. Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 1999; 159: 935-939.
37. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JR. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 2000; 162: 134-138.
38. Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 2000; 4: 282-289.
39. Gunn SR, Pinsky MR. Implications of arterial pressure variation in patients in the intensive care unit. Curr Opin Crit Care 2001; 7: 212-217.
40. Coriat P, Vrillon M, Perel A. A comparison of systolic pressure variations and echocardiographic eatimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg 1994; 78: 46-53.
41. Denault AY, Gasior TA, Gorscan J 3rd, Mandario WA, Deneault LG, Pinsky MR. Determinants of aortic presuure variation during positive-pressure ventilation in man. Chest 1999; 116: 176-186.
42. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol 1985; 249: H867-H875.
43. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84: 482-492.
44. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G., Dell’Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 1986; 59: 178-193.
45. Rimoldi O, Pierini S, Ferrari A, Cerutti S, Pagani M, Malliani A. Analysis of short-term oscillations of R-R and arterial pressure in conscious dogs. Am J Physiol 1990; 258: H967-H976.
46. Furlan R, Guzzetti S, Crivellaro W, Dassi S, Tinelli M, Baselli G, Cerutti S, Lombardi F, Pagani M, Malliani A. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulatory subjects. Circulation 1990; 81: 537-547.
47. Pagani M, Rimoldi O, Pizzinelli P, Furlan R, Crivellaro W, Liberati D, Cerutti S, Malliani A. Assessment of the neural control of the circulation during psychological stress. J Auton Nerv Sys 1991; 35: 33-42.
48. Di Rienzo M, Castiglioni P, Mancia G, Parati G, Pedotti, A. 24 h sequential spectral analysis of arterial pressure blood pressure, and pulse interval in free-moving subjects. IEEE Trans Biomed Eng 1989; BME-36: 1066-1075.
49. Di Rienzo M, Parati G, Castiglioni P, Omboni S, Ferrari AU, Ramirez AJ, Pedotti A, Mancia G. Role of sinoaortic afferents in modulating BP and pulse-interval spectral characteristics in unanesthetized cats. Am J Physiol 1991; 261: H1811-H1818.
50. Japundzic N, Grichois ML, Zitoun P, Laude D, Elghozi JL. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton Nerv Syst 1990; 30: 91-100.
51. Cerutti C, Gustin MP, Pautre CZ. Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach. Am J Physiol 1991; 261: H1292-H1299.
52. Cerutti C, Barres C, Paultre C. Baroreflex modulation of blood pressure and heart rate variabilities in rats: assessment by spectral analysis. Am J Physiol 1994; 266: H1993-H2000.
53. Inoue K, Miyake S, Kumashiro M, Ogata H, Ueta T, Akatsu T. Power spectral analysis of blood pressure variability in traumatic quadriplegic humans. Am J Physiol 1991; 260: H842-H847
54. Berger RD, Saul JP, Cohen RJ. Transfer function analysis of autonomic regulation I. Canine atrial rate response. Am J Physiol 1989; 256: H142-H152.
55. Berger RD, Saul JP, Cohen RJ. Assessment of autonomic response by broad-band respiration. IEEE Trans Biomed Eng 1989; BME-36: 1061-1065.
56. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol 1991; 261: H1231-H1245.
57. Kuo TBJ, Yang CCH, Chan SHH. Transfer function analysis of ventilatory influence on systemic arterial pressure in the rats. Am J Physiol 1996; 271: H2108-H2115.
58. Yang CCH, Kuo TBJ. Assessment of cardiac sympathetic regulation by respiratory-related arterial pressure variability in the rats. J Physiol 1999; 515: 887-896.
59. Yang CCH, Kuo TBJ. Impact of pulse pressure on the respiratory-related arterial pressure variability and its autonomic control in the rat. Plugers Arch 2000; 439: 772-780.
60. Rabiner LR, Schafer RW. Digital Processing of Speech Signals. Englewood Cliffs 1978; Prentice-Hall.
61. Daniels FH, Leonard EF, Cortell S. Spectral analysis of arterial blood pressure in the rat. IEEE Trans Biomed Eng 1983; BME-30: 154-159.
62. Akselrod S. Spectral analysis of fluctuations in cardiovascular parameters: a quantitative tool for the investigation of autonomic control. Trends Pharmacol Sci 1988; 9: 6-9.
63. Akselrod S, Eliash S, Oz O, Cohen S. Hemodynamic regulation in SHR: investigation by spectral analysis. Am J Physiol 1987; 253: H176-H183.
64. Baselli G, Cerutti S, Civardi S, Liberati D, Lombardi F, Malliani A, Pagani M. Spectral and cross-spectral analysis of heart rate and arterial blood pressure variability signals. Comp Biomed Res 1986; 19: 520-534.
65. Kubota T, Itaya R, Alexander J Jr, Todaka K, Sugimachi M, Sunagawa K. Autoregressive analysis of aortic input impedance: comparison with Fourier transform. Am J Physiol 1991; 260: H998-H1002.
66. Stearn SD, David RA. Signal Processing Algorithms. Englewood Cliffs 1988; Prentice-Hall.
67. Strum RD, Kirk DE. First Principles of Discrete Systems and Digital Signals Processing, Reading 1989; Addison-Wesley.
68. Embree PM. C Language Algorithms for real-time DSP, Englewood Cliffs 1995; Prentice-Hall.
69. Embree PM, Kimble B. C Language Algorithms forDigital Signal Processing, Englewood Cliffs 1991; Prentice-Hall
70. Berggren U, Gorden T, Grama D, Haglund U, Rastard J, Arvidsson D. Laparoscopic versus open cholecystectomy: hospitalization, sick leave, analgesia and trauma responses. Br J Anaesth 1994; 81: 1362-1365.
71. Suttmann R, Paul A, Kirschnik M, Jahn M, Doehn M. Preoperative morbidity and anaesthesia-related negative events in patients undergoing conventional or laparoscopic cholecystectomy. Endosc Surg Allied Technol 1995; 3: 156-161.
72. Semm K. New apparatus for the “cold-coagulation” of benign cervical lesions. Am J Obstet Gynecol 1966; 95: 963-966.
73. Joris J, Cigarini I, Legrand M, Jacquer N, de Groote D, Franchimont P, and Lamy M. Metabolic and respiratory changes after chelecystectomy performed via laparotomy and laparoscopy. Br J Anaesth 1992; 69: 341-345.
74. Safran DB. Physiologic effects of pneumoperitoneum. Am J Surgery 1994; 167: 281-286.
75. Dhoste K, Karayan J, Lacoste L, Lehuede MS, Fusciardi J. Haemodynamic changes during laparoscopic cholecystectomy in the elderly. Br J Anaesth 1993; 72: A32.
76. Scott DB, Julian DG. Observations on cardiac arrhythmias during laparoscopy. Br Med J 1972; 1: 411-413.
77. Donald N, Reed JR, Pamela N. Untoward cardiac changes during CO2 insufflation in laparoscopic cholecystectomies in low-risk patients. J Laparoendosc Adv Surg Tech 1998; A. 8: 109-114.
78. Aoki T, Tanii M, Takahashi D, Tateda M, and Miyazawa A. Cardiovascular changes and plasma catecholamine levels during laparoscopic surgery. Anesth Analg 1994; 78: s8.
79. O’leary E, Hubbard K, Tormey W, Cunningham, A J. Laparoscopic cholecystectomy: haemodynamic and neuroendocrine responses after pneumoperitoneum and changes in position. Br J Anaesth 1996; 76: 640-644.
80. Myre K, Rostrup M, Buanes T, Stokland O. Plasma catecholamines and haemodynamic changes during pneumoperitoneum. Acta Anaesthesiol Scand 1998; 42: 343-347.
81. Sato N, Kawamoto M, Yuge O, Suyama H, Sanuki M, Matsumoto C, Inoue K. Effects of pneumoperitoneum on cardiac autonomic nervous activity evaluated by heart rate variability analysis during sevoflurane, isoflurane, or propofol anesthesia. Surg Endosc 2000; 14: 362-366.
82. Bickel A, Yahalom N, Roguin R, Frankel J, Breslava S, Ivry, Eitan A. Power spectral analysis of heart rate variability during positive pressure pneumoperitoneum: The significance of increased cardiac sympathetic expression. Surg Endosc 2002; 16: 1341-1344.
83. Pizov R, Segal E, Kaplan L, Floman Y, Perel A. The use of systolic pressure variation in hemodynamic monitoring during deliberate hypotension in spine surgery. J Clin Anesth 1990; 2: 96-100.
84. Berkenstadt H, Margalit N, Hadani M. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 2001; 92: 984-989.
85. Kuo TBJ, Chan SHH. Continuous, on-line, real-time spectral analysis of systemic arterial pressure signal. Am J Physiol 1993; 264: H2208-H2213.
86. Baujard C, Ponchon P, Elghozi JL. Effects of graded hemorrhage on short-term variability of blood pressure in conscious rats. Fundam Pharmacol 1996; 10: 511-517.
87. Kawase M, Komatsu T, Nishiwaki K, Kobayashi M, Kimura T, Shimada Y. Heart rate variability and arterial pressure variability show different characteristic changes during hemorrhage in isoflurance-anesthetized, mechanically ventilated dogs. Anesth Analg 2002; 94: 16-21.
88. Yang CCH, Kuo TBJ, Chan SHH. Auto- and cross-spectral analysis of cardiovascular fluctuactions during pentobarbital anesthesia in the rat. Am J Physiol 1996; 270: H575-H582.
89. Hauptman JG, DeJong GK, Blasko KA, Chaudry IH. Measurement of hepatocellular function, cardiac output, effective blood volume, and oxygen saturation in rats. Am J Physiol 1989; 257: R439-R444.
90. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996; 93: 1043-1065.
91. Tournadre JP, Allaouchiche B, Cayrel V, Mathon L, Chassard D. Estimation of cardiac preload changes by systolic pressure variation in pigs undergoing pneumoperitoneum. Acta Anaesthesiol Scand 2000; 44: 231-235.
92. MaCance AJ. Assessment of sympathoneural activity in clinical research. Life Sci 1991; 48: 713-721.
93. Pizov R, Ya’ari Y, Perel A. The arterial pressure waveform during acute ventricular failure and synchronized external chest compression. Anesth Analg 1989; 68: 150-156.
94. Lai HY, Yang CCH, Huang FY, Lee Y, Kuo Y, Kuo TBJ. Respiratory-related arterial pressure variability as an indicator of graded blood loss: Involvement of the autonomic nervous system. Clin Sci 2003; 105: 491-497.
95. Gold MI, Brown M, Coverman S, and Herrington C. Heart rate and blood pressure effects of esmolol after ketamine induction and intubation. Anesthesiology 1986; 64: 718-723.
96. Miller DR, Martineau RJ, Wynands JE, Hill J. Bolus administration of esmolol for controlling the haemodynamic response to tracheal intubation: the Canadian Multicentre Trial. Can J Anaesth 1991; 38: 849-858.
97. Reuter DA, Felbinger TW, Kilger E, Schmidt C, Lamm P, Goets, AE. Optimising fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations. Br J Anaesth 2002; 88: 124-126.
98. Lenz RJ, Thomas TA, Wilkins DF. Cardiovascular changes during laparoscopy. Anaesthesia 1976; 31: 4-12.
99. Ho HS, Gunther RA, Wolfe BM. Intraperitoneal carbon dioxide insufflation and cardiopulmonary functions. Arch Surg 1992; 127: 923-933.
100. Ho HS, Saunders CJ, Corso FA, Wolfe BM. The effect of CO2 pneumoperitoneum on hemodynamics in hemorrhaged animals. Surgery 1993; 114: 381-388.
101. Voltz J, Koester S, Weis M, Schmidt R, Urbaschek R, Melchert F. Pathophysiologic features of a pneumoperitoneum at laparoscopy: a swine model. Am J Obstet Gynecol 1995; 174: 132-140.
102. Nelskyla K, Yli-Hankala A, Sjoberg J, Korhonen I, Korttila K. Warming of insufflation gas during laparoscopic hysterectomy: effect on body temperature and the autonomic nervous system. Acta Anaesthesiol Scand 1999; 43: 974-978.
103. Rasmussen JP, Dauchot PJ, Depalma RG, Sorensen B, Regula G, Anton AH, Gravenstein JS Cardiac function and hypercarbia. Arch Surg 1978; 113: 1196-1200.
104. Wolf JS, Claymann RV, Monk TG, McClennan BL, McDougall EM. Carbon dioxide absorption during laparoscopic pelvic operation. J Am Coll Surg 1995; 180: 555-560.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top