跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/04 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯大偉
研究生(外文):Ta-Wei Hou
論文名稱:評估雜訊對於量化磁振擴散張量影像的影響以及改進腦神經白質分類的方法
論文名稱(外文):Estimating noise effect to indices derived from diffusion tensor imaging and improving the white matter classification method
指導教授:朱唯勤朱唯勤引用關係
指導教授(外文):Woei-Chyn Chu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:87
中文關鍵詞:擴散張量影像相對非等向性擴散索引圖方向關係係數系統聚類分析法動態分類法白質分類
外文關鍵詞:diffusion tensor imagingrelative indexdirectional correlationhierarchical clusteringk-mean clusteringwhite matter classfication
相關次數:
  • 被引用被引用:4
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
核磁共振擴散張量影像(Magnetic Resonance Diffusion Tensor Imaging)對於非侵入式的觀察生物體組織結構之研究相當有用。利用擴散張量影像所量化出來不同的資料,尤其是相對非等向性擴散索引圖(Relative Anisotropy)已廣泛應用在研究腦中白質神經纖維結構特性以及其生理與病理變化中。然而,透過傳統脈衝程序造影擴散張量影像所花費的時間相當冗長,必須利用快速造影縮短成像時間才適用於人體。但是快速的造影會造成雜訊的增加,因此本研究的第一個目標是模擬不同雜訊的情形下快速磁振擴散張量造影對白質分類的影響。
本論文的第二個目標是研究腦中白質部分的結構特性,除了利用相鄰像素之擴散張量的第一特徵向量的內積,來計算此二像素的方向關係係數 (direction correlation, DC),用來量化白質內部的方向相似度之外,也利用非影像處理的方式---多維度變數分類法中的系統聚類分析法(Hierarchical Clustering Analysis)以及動態分類法(K-mean Clustering Analysis)將白質方向性量化成多維的座標中的族群,進行白質的分類。
Magnetic Resonance Diffusion Tensor Imaging (DTI) is a powerful tool to investigate the tissue structure non-invasively. From DTI, the relative anisotropy (RA), quantifying the degree of diffusion anisotropy, is useful to characterize white matter tracts. However, traditional pulse sequence imaging process takes long time. Decreasing the imaging time by rapid imaging pulse sequence is desirable. But rapid imaging pulse sequence increases image noise levels. The first purpose of this study is to investigate how does noise resulting from the rapid imaging pulse sequence influence white matter classification.
The second purpose of this study is to investigate proper procedures to characterize white matter structure. By calculating the inner product of adjacent pixel eigenvectors obtained by diffusion tensor, we can quantify directional correlation (DC) to characterize white matter directional similarity. We use multidimensional variation analysis like hierarchical clustering analysis and k-mean clustering analysis to quantify the directional property of white matter in multidimensional coordinate system.
1. Denis Le Bihan, Jean-Francois Mangin, Cyril Poupon, Chris A.Clark,Sabina Pappata, Nicolas Molko, and Hughes Chabriat. “Diffusion tensor imaging : concepts and application.” Journal of Magnetic Resonance Imaging 13 : 534-546. 2001.
2. Susumu Mori and Peter B. Barker. “Diffusion magnetic resonance imaging : its principle and application.” The anatomical record (New Anat.) 257 : 102-109, 1999.
3. Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, Asgari H and Norman D. “Diffusion-weighted MR imaging of acute stroke : correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats.” AJNR Am J Neuroradiol. 3 : 423-429, 1990.
4. Alexander C. Guo, Jeffrey R. Petrella, Joanne Kurtzberg and James M. Provenzale. “Evaluation of white matter anisotropy in krabbe disease with diffusion tensor MR imaging : initial experience.” Radiology 218 : 809-815, 2001.
5. Mark A. Horsfield and Derek K. Jones. “Applications of diffusion-weighted and diffusion tensor MRI to white matter disease – a review.” NMR In Biomedicine 15 : 570-577, 2002.
6. 孫樹威, “磁振擴散張量造影研究:擴散不等向性訊號量測的改進以及白質神經束的分類,” 國立陽明大學醫學工程研究所博士論文, 民國九十一年六月.
7. Hahn, E. L. Spin echoes. Physical Review 80, 580-594. 1950.
8. Torrey, H. C. Bloch equations with diffusion terms. Journal of Chemical Physics 104, 563-565. 1956.
9. Stejskal, E. O. and Tanner, J. E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. Journal of Chemical Physics 42, 288-292. 1965.
10. Le Bihan, D. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161 2, 401-407. 1986.
11. Moseley, M. E. Early detection of regional cerebral ischemia in cats : comparison of diffusion- and T2-weighted MRI and spectroscopy. Magnetic Resonance in Medicine 14, 330-346. 1990.
12. Basser, P. J., Mattiello, J., Turner, R., and Le Bihan, D. Diffusion tensor echo-planar imaging of human brain. in Proceedings of the SMRM , 584. 1993.
13. Peter J. Basser. “Inferring microstructural features and the physiological state of tissue from diffusion weighted images.” NMR In Biomedicine 8 : 333-344, 1995.
14. Peter J. Basser, Sinisa Pajevic, Carlo Pierpaoli, Jeffrey Duda and Akram Aldroubi. “In vivo fiber tractography using DT-MRI data.” Magnetic Resonance in Medicine 44 : 625-632, 2000.
15. Metter R. Wiegell, MSc Henrik B. W. Larsson and Van J. Wedeen. “Fiber Crossing in Human Brain Depicted with Diffusion Tensor MR Imaging.” Radiology 217 : 897-903, 2000.
16. Susumu Mori and Peter C. M. van Zijl. “Fiber tracking : principle and strategies – a technical review.” NMR In Biomedicine 15 : 468-480, 2002.
17. Susumu Mori, Ryuta Itoh, Jiangyang Zhang, Walter E. Kaufmann, Peter C.M. van Zijl, Meiyappan Solaiyappan and Paul Yarowsky. “Diffusion Tensor Imaging of the Developing Mouse Brain.” Magnetic Resonance in Medicine 46 : 18-23, 2001.
18. Rong Xue, Peter C.M. van Zijl, Barbara J. Crain, Meiyappan Solaiyappan and Susumu Mori. “In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging.” Magnetic Resonance In Medicine 42 : 1123-1127, 1999.
19. Thomas E. Conturo, Nicolas F. Lori, Thomas S. Cull, Erbil Akbudak, Abraham Z. Snyder, Joshua S. Shimony, Robert C. McKinstry, Harold Burton and Marcus E. Raichle. “Tracking neuronal fiber pathways in the living human brain.” Proc Natl Acad Sci U S A. 96 : 10422-10427, 1999.
20. Derek K. Jones, Andrew Simmons, Steve C.R. Williams and Mark A. Horsfield. “Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI.” Magnetic Resonance in Medicine 42 : 37-41, 1999.
21. Sheng-Kwei Song, Shu-Wei Sun, Michael J. Ramsbottom, Chen Chang, John Russell and Anne H. Cross. “Dysmyelination Revealed through MRI as Increased Radial (but Unchanged Axial) Diffusion of Water.” NeuroImage 17 : 1429-1436, 2002.
22. Peter J. Basser and Derek K. Jones. “Diffusion-tensor MRI : theory, experiment design and data analysis – a technical review.” Journal of NMR In Biomedicine 15 : 456-467, 2002.
23. Papadakis NG, Xing D, Houston GC, Smith JM, Smith MI, James MF, Parsons AA, Huang CL, Hall LD, Carpenter TA. A study of rotationally invariant and symmetric indices of diffusion anisotropy. Journal of Magnetic Resonance Imaging 17 : 881-892, 1999.
24. Bastin ME, Armitage PA, Marshall I. A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. Journal of Magnetic Resonance Imaging 16 : 773-785, 1998.
25. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111 : 209-219, 1996.
26. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance Medicine 36 : 893-906, 1996.
27. 翁駿程, “以擴散磁振造影技術決定顯微結構尺寸與方向之研究,” 國立台灣大學醫學工程研究所博士論文, 民國九十年六月.
28. Ming-Jang Chiu, Chung-Chin Lin, Kai-Hsiang Chuang, Jyh-Horng Chen and Kou-Mou Huang. “Tissue Segmentation-Assisted Analysis of fMRI for Human Motor Response : An Approach Combining Artificial Neural Network and Fuzzy C Means.” Journal of Digital Imaging 14 : 38-47, 2001.
29. Jean-Marie Bonny and Jean-Pierre Renou. “Euclidian distance-weighted smoothing for quantitative MRI : application to intervoxel anisotropy index mapping with DTI.” Magnetic Resonance 159 : 183-189, 2002.
30. Bram Stieltjes, Walter E. Kaufmann, Peter C. M. van Zijl, Kim Fredericksen, Godfrey D. Pearlson, Meiyappan Solaiyappan and Susumu Mori. “Diffusion Tensor Imaging and Axonal Tracking in the Human Brainstem.” NeuroImage 14 : 723-735, 2001.
31. Kai-Hsiang Chuang, Ming-Jang Chiu, Chung-Chih Lin and Jyh-Horng Chen. “Model-Free Functional MRI Analysis using Kohonen Clustering Neural Network and Fuzzy C-Means.” IEEE Transactions on Medical Imaging, Vol. 18, No. 12, 1999.
32. V.D. Calhoun, T. Adali, G.D. Pearlson and J.J. Pekar. “Spatial and Temporal Independent Component Analysis of Functional MRI Data Containing a Pair of Task-Related Waveforms. ” Human Brain Mapping 13:43-53, 2001.
33. R.E. Hendrick, U. Raff. Image Contrast and Noise. in “Magnetic Resonance Imaging”, 2nd edition, (D.D. Stark and W.G. Bradley eds.), 109-144, Mosby-Year Book, St. Louis, MO., 1992.
34. R.M. Henkelman. Measurement of Signal Intensities in the Presence of Noise in MR Images. Med. Phys. 12(2), 232-233, 1985.
35. Ray H. Hashemi and William G. Bradley. “MRI The Basics”. William & Wilkins,Inc. ISBN : 0-683-18240-4.
36. Rafael C. Gonzalez and Richard E. Woods. “Digital Imaging Processing. 2nd Edition”, Prentice-Hall, Inc. ISBN : 0-13-094650-8.
37. 郭英調, “臨床研究手冊”, 合慶國際圖書有限公司, ISBN : 957-97746-9-2.
38. 羅積玉, “多元統計分析與應用”, 科技圖書股份有限公司, ISBN : 957-655-225-7.
39. 張智星, “Matlab程式設計與應用 2nd Edition”, 清蔚科技出版事業部, ISBN : 957-97544-0-3.
40. 連國珍, “數位影像處理 2nd Edition”, 儒林圖書有限公司, ISBN : 957-499-172-5.
41. 繆紹剛, “數位影像處理 活用-Matlab”,全華科技圖書股份有限公司, ISBN : 957-21-2467-6.
42. Bahn MM, Oser AB, Cross DT 3rd. “CT and MRI of stroke. “ J Magn Reson Imaging. 6(5):833-45, 1996.
43. van Gelderen P, de Vleeschouwer MH, DesPres D, Pekar J and van Zijl PC. “ Water diffusion and acute stroke. “ Magn Reson Med. 31(2):154-163, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top