跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家賢
研究生(外文):Chia-hsien Lin
論文名稱:羧基化硒化鎘/硫化鋅量子點之合成及其標定膠原蛋白纖維之應用
論文名稱(外文):Synthesis of Carboxyl-CdSe/ZnS Quantum Dots and Their Application in Labeling of Collagen Fibers
指導教授:王盈錦
指導教授(外文):Yng-jiin Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:94
中文關鍵詞:硒化鎘硫化鋅量子點膠原蛋白
外文關鍵詞:CdSeZnSquantum dotcollagen
相關次數:
  • 被引用被引用:1
  • 點閱點閱:586
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究改良先前學者之合成方法,合成核心為硒化鎘外層包覆硫化鋅的親水性奈米晶體(又稱為量子點)。以表面修飾帶有羧基(carboxyl groups,-COOH) 的量子點,其螢光為綠色及紅色,發射光譜分別為524.4 nm及635 nm,extinction coefficient依序為5.96 × 104和5.63 × 105來標定膠原蛋白纖維。以螢光強度的明顯增加間接證實硒化鎘外層確實包覆上硫化鋅而形成core/shell結構。利用核磁共振光譜儀分析,證實量子點成功地羧基化而變為親水性。利用EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) 交聯標定膠原蛋白纖維。以量子點改進傳統作為細胞標定的螢光染劑受限於其半衰期過短,僅能用特定波長激發及發出單一色光之缺點。由螢光強度衰逝測試,發現以量子點標定膠原蛋白纖維螢光強度不會隨連續激發而大幅衰減。在穿透式電子顯微鏡下觀察量子點於膠原蛋白纖維上附著的情形,統計其標定的位置。以觀察的方式直接找出膠原蛋白上標定位置,發現在特定的位置上確有較多量子點的附著,將其與膠原蛋白的胺基酸序列對照,發現這些位置確為帶電基團較密集處且皆有lysine的存在。使用不同螢光顏色的量子點標定膠原蛋白纖維,最後將雙色螢光標定的膠原蛋白纖維等量混合,作為將來細胞培養用基材。
My research modifies former scholars’ synthesis methods, synthesizing water-soluble CdSe/ZnS (core/shell) quantum dots (QDs). We label collagen fibers with carboxyl quantum dots, whose colors are green and red, emission wavelengths are 524.4 nm and 635 nm, and extinction coefficients are 5.96 × 104 and 5.63 × 105 respectively. Apparent increase in fluorescent intensity indirectly proves that CdSe QDs are overcoated with ZnS to form core/shell structure. We use NMR to analyze carboxyl QDs, and confirm that QDs are successfully carboxylized to become water-soluble. We use carboxyl QDs to label collagen fibers crosslinked by EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide). We use QDs to improve the limitations of fluorescent dyes for cell-labeling because of their short half-time, narrow excitation wavelength and single color emission. From fluorescent intensity decay test, we find that the fluorescent intensity of QD-labeled collagen fibers won’t remarkably decay under successive irradiation. Under transmission electron microscope, we can observe the binding situation of QDs on collagen fibers, and estimate the QDs binding on specific locations. We directly observe QDs on collagen fibers, and discover that there are more QDs labeled on specific locations. Compared with the amino acid sequence of collagen, we see that these locations are densely charged regions and also find the existence of lysine. At last, we mix equal volume of dual-color labeling collagen fibers to form a matrix for cell culture.
Aldana, J., Wang, Y. A., and Peng, X.G. : Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 2001, 123, 8844-8850
Alivisatos, A.P. : Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226-13239
Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P. : Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013-2015
Chan, W.C.W., Nie, S.M. : Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016-2018
Chan, W.C.W., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M.Y., Nie, S.M.: Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology 2002, 13, 40-46
Chapman, J.A. : The staining pattern of collagen fibrils. Connective Tissue Research 1974, 2, 137-150
Cumberland, S.L., Hanif, K.M., Javier, A., Khitrov, G.A., Strouse, G.F., Woessner, S.M., and Yun, C.S. : Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials. Chem. Mater. 2002, 14, 1576-1584
Dabbousi, B.O., Viejo, J.R., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G. : (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463-9475
Georges, J., Arnaud, N., and Parise, L. : Limitations arising from optical saturation in fluorescence and thermal lens spectrometries using pulsed laser excitation: application to the determination of the fluorescence quantum yield of rhodamine 6G. Appl. Spectrrosc. 1996, 50, 1505-1511
Gerion, D., Pinaud, F., Willimas, S.C., Parak, W.J., Zanchet, D., Weiss, S., Alivisatos, A.P. : Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 2001, 105, 8861-8871
Goldman, E.R., Balighian, E.D., Mattoussi, H., Kuno, M.K., Mauro, J.M., Tran, P.T., and Anderson, G.P. : Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 2002, 124, 6378-6382
Guo, W.H., Li, J.J., Wang, Y.A., and Peng, X.G. : Luminescent CdSe/CdS nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. J. Am. Chem. Soc. 2003, 125, 3901-3909
Han, M.Y., Gao, X., Su, J.Z., Nie, S.M. : Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631-635
Henglein, A. Ber. Bunsen Phys. Chem. 1982, 86, 301
Hines, M.A. and Sionnest, P.G. : Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468-471
Jaiswal, J.K., Mattoussi, H., Mauro, J.M., and Simon, S.M. : Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology 2003, 21, 47-51
Katari, J.E.B., Colvin, V.L., and Alivisatos, A.P. : X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 1994, 98, 4109-4117
Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., Webb, W.W. : Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434-1436
Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V., Bawendi, M.G. : Self-assembly of CdSe-ZnS quantum dots bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 2000, 122, 12142-12150
Mitchell, G.P., Mirkin, C.A., Letsinger, R.L. : Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 1999, 123, 4103-4104
Murray, C.B., Norris, D.J., and Bawendi, M.G. : Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706-8715
Murray, C.B., Kagan, C.R., Bawendi, M.G. : Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545-610
Nakajima, N. and Ikada, Y. : Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjugate Chem. 1995, 6, 123-130
Nimni, M.E. : Collagen Volume I, CRC Press, 1988, p7
Nirmal, M. and Brus, L. : Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res 1999, 32, 407-414
Peng, X.G., Schlamp, M.C., Kadavanich, A.V., and Alivisatos, A.P. : Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019-7029
Peng, X.G., Wickham, J., Alivisatos, A. P. : Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "focusing" of size distributions. J. Am. Chem. Soc. 1998, 120, 5343-5344
Peng, X.G., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A.P. : Shape control of CdSe nanocrystals. Nature 2000, 404, 59-61
Peng, Z.A. and Peng, X.G. : Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183-184
Podhradsky, D., Drobnica, L., and Kristian, P. : Reactions of cysteine, its derivatives, glutathione, coenzyme A, and dihydrolipoic acid with isothiocyanates. Experientia 1979, 35, 154
Prockop, J.D. : Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 1995, 64, 403-434
Qu, L.H., Peng, A., and Peng, X.G. : Alternative routes toward high quality CdSe nanocrystals. Nanolett. 2001, 1, 333-337
Qu, L.H. and Peng, X.G. : Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049-2055
Saito, T., Hayamizu, K., Yanagisawa, M., and Yamamoto, O. Integrated spectral database system for organic compounds. http://www.aist.go.jp/RIODB/SDBS/menu-e.html 2004
San Antonio, J.D., Lander, A.D., Karnovsky, M.J., and Slayter, H.S. : Mapping the heparin-binding sites on type I collagen monomers and fibrils. J. Cell Biology 1994, 125, 1179-1188
Sugimoto, T. : Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 1987, 28, 65-108
Willard, D.M., Carillo, L.L., Jung, J., Van Orden A. : CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. NanoLett. 2001, 1, 469-474
Wu, X.Y., Liu, H.J., Liu, J.Q., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N.F., Peale, F. and Bruchez, M.P. : Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology 2003, 21, 41-46
Yu, W.W. and Peng, X.G. : Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. 2002, 41, 2368-2371
Yu, W.W., Qu, L.H., Guo, W.H., and Peng, X.G. : Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854-2860
尹邦躍編著 奈米時代 五南書局 2002
黃國瑋 懸浮性II-VI族化合物半導體奈米粒子之合成與鑑定 台灣大學化學研究所 碩士論文 2003
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top