跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 11:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韻宇
研究生(外文):Yun-Yu Chen
論文名稱:房室傳導阻斷病人心率變異度之探討
論文名稱(外文):A study of atrial rate variability in high-degree AV-block patients
指導教授:高材高材引用關係
指導教授(外文):Tsair Kao
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
中文關鍵詞:心房心率變異房室傳導阻斷Lomb-Scargle正規化頻譜模擬
外文關鍵詞:atrial rate variabilityatrioventricular blockLomb-Scargle normalized periodogramsimulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
隨著人體自主神經分泌量的改變,使心跳間期不固定。此變異性稱為心率變異度(heart rate variability,HRV)。由於人體神經活性無法以非侵入方式取得,一般以心跳間期經由快速傅立葉轉換(fast Fourier transform, FFT)所得之心率變異頻譜上不同頻帶的能量分佈,評估交感與副交感神經的活性。其中,高頻區主頻位置與呼吸相同,其能量大小代表副交感神經的活性強弱。
在先前觀察房室傳導阻斷病人心房心率變異(atrial rate variability,ARV)頻譜的研究中發現,病人呼吸速率沒有明顯變化情況下,心房心率變異度頻譜的高頻區主頻位置會隨著心臟節律器(pacemaker)刺激速率不同,而落在不同位置。因前人在電刺激狗心室的研究中推論感壓反射機制會導致心率改變,故我們推測頻譜高頻區主頻可能受到感壓反射作用影響。
本研究藉由結合感壓反射路徑之血壓與自主神經間的關係轉換模型,及受自主神經影響下對應產生的竇房結反應模型,以病人平躺姿勢時記錄得之實際血壓為輸入,模擬不同節律器刺激速率(VVI 模式)下的竇房結搏動速率反應,並同時以傳統傅立葉及Lomb-Scargle正規化頻譜檢視房室阻斷病人之心房心率變異度頻譜,探討高頻主頻位置的來由;最後,希望藉由Lomb-Scargle正規化頻譜可避免反疊(aliasing)的特性得到心率變異度參數。
由模擬得到與病人實際心房心率變異頻譜相同高頻主頻位置的結果可知,心臟節律器的刺激使血壓呈現同頻波動,此速率經由感壓反射路徑中不同神經信號、但同頻的振盪速率將刺激頻率傳遞至竇房結細胞。經由比對不同分析方法所得之頻譜結果顯示,病人的心房心率變異度頻譜上存有刺激頻率與心房速率的差值,或差值的反疊(aliasing)。此成份的存在會導致心率變異頻譜分析的評估參數錯誤。此外,當Lomb-Scargle正規化頻譜應用在心臟信號上時,受限於非隨機的不等距取樣及心臟訊號特性,致使正規化頻譜無法理想地移除反疊,達到修正頻譜參數的目的。
The change of two autonomic branches alternates the heartbeat intervals. This beat-to-beat variation is called heart rate variability (HRV). Because the nervous activities can’t be detected by noninvasive method, they are estimated by the HRV spectra that transforming the beat-to-beat intervals to frequency domain by fast Fourier transform (FFT) analysis. The frequency distribution presents the different nerve activities. For example, the power of the dominant peak in high frequency (HF) area which is synchronous with breath represents the activities of parasympathetic nerves.
In earlier study concerning the atrial rate variability (ARV) spectra of high-degree atrioventricular (AV) block patients, we found that the dominant peak in HF located at different positions with various pacing rates, in spite of the breath rate of patients had no marker change. In previous research on pacing dog’s ventricle, it referred that the baroreflex mechanism would change the atrial rate. Therefore, we supposed that the dominant peak in HF was influenced by the baroreflex mechanism.
In this study, we developed a model describing the baroreflex feedback loop by combining the relation between blood pressure and autonomic nerve activities, and the SA node reaction under different autonomic influences. We represented the atrial rate variability (ARV) spectra from real blood pressure of high-degree AV block patients in supine with different pacing rates (VVI mode). And then we examined the spectra both by traditional fast Fourier transform and Lomb-Scargle normalized periodogram methods. Finally, we tried to correct the ARV parameters by Lomb-Scargle normalized periodogram which is claimed free for aliasing.
From the simulation results which could get the dominant peak in HF, we concluded that the pacemaker made the blood pressure fluctuated with pacing; this rate transmitted through afferent and efferent nerves firing at the same rate, and finally the frequency was conveyed to SA node.
From the spectral results of different analysis approaches, we conclude that on the patients’ ARV spectra, there were components that came from the difference of pacing and atrial rate or its aliasing which result in the incorrect estimation of ARV parameters. The performance of Lomb-Scargle normalized periodogram is nullified while applying on heart rate signals because the non-randomly sampled and characteristics of heart rate, and is helpless on the correction of HRV indexes.
[1] H.W. Chiu, T. Kao, H.C. Hsiao, C.W. Kong, “Cardiac aliasing in atrial rate variation response to fixed-rate ventricular pacing,” Computers in Cardiology, 28:505-508, 2001.
[2] J.L. Robinson, W.C. Farr, G. Grupp, “Atrial rate response to ventricular pacing in the unanesthetized A-V blocked dog,” Am. J. Physiol., 224(1):40-45, 1973.
[3] U. Zwiener, B. Lüthke, R. Bauer, D. Hoyer, A. Richter, H. Wagner, “Heart rate fluctuations of lower frequencies than the respiratory rhythm but caused by it,” Pflugers Arch.: Eur. J. Physiol., 429:455- 461, 1995.
[4] M. Rother, H. Witte, U. Zwiener, M. Eiselt, P. Fischer, “Cardiac aliasing– a possible cause for the misinterpretation of cardiorespirographic data in neonates,” Early Hum. Dev., 20:1-12, 1989.
[5] http://www.amershamhealth.com/medcyclopaedia/medical/Volume
%20V%202/heart%20block.asp
[6] H. Seidel, H. Herzel, “Bifurcations in a nonlinear model of the baroreceptor- cardiac reflex,” Physica D, 115:145-160, 1998.
[7] M. Ursino, “Interaction between carotid baroregulation and the pulsating heart: a mathematical model,” Am. J. Physiol., 275:H1733- H1747, 1998.
[8] H.W. Chiu, “A mathematical model for heart rate modulated by autonomic nerves and heart rate variability,” Dissertation, 2000.
[9] C.L. Pelletier, D.L. Clement, J.T. Shepherd, “Comparison of afferent activity of canine aortic and sinus nerves,” Circulation Research, 31:557-568, 1972.
[10] S.A. Smith, R.G. Querry, P.J. Fadel, M.W. Weiss, A. Olivencia-Yurvati, X. Shi, P.B. Raven, “Comparison of aortic and carotid baroreflex stimulus-response characteristics in humans,” Autonomic Neuroscience: Basic & Clinical, 88:74-85, 2001.
[11] A.M. Brown, W.R. Saum, S. Yasui, “Baroreceptor dynamics and their relationship to afferent fiber type and hypertension,” Circulation Research, 42(5):694-702, 1978.
[12] M.W. Barazanji, K.G. Cornish, “Carotid and aortic baroreceptor control of heart rate in conscious monkey,” Am. J. Physiol., 253:H811-H817, 1987.
[13] D.W. Ferguson, F.M. Abboud, A.L. Mark, “Relative contribution of aortic and carotid baroreflexes to heart rate control in man during steady state and dynamic increases in arterial pressure,” J. Clin. Invest., 76:2265-2274, 1985.
[14] H. Irisawa, I. Ninomiya, “Comparison of the averaged nervous activities of aortic and carotid sinus nerves,” Am. J. Physiol., 213(2): 504-510, 1967.
[15] W. Delius, K.E. Hagbarth, A. Hongell, B.G. Wallin, “General characteristics of sympathetic activity in human muscle nerves,” Acta Physiol. Scand., 84:65-81, 1972.
[16] B.G. Wallin, D.L. Eckberg, “Sympathetic transients caused by abrupt alterations of carotid baroreceptor activity in humans,” Am. J. Physiol., 242:H185-H190, 1982.
[17] G.G. Berntson, J.T. Bigger Jr., D.L. Eckberg, P. Grossman, P.G. Kaufmann, M. Malik, H.N. Nagaraja, S.W. Porges, J.P. Saul, P.H. Stone, M.W. van der Molen, “Heart rate variability: origins, methods, and interpretive caveats,” Psychophysiology, 34:623-648, 1997.
[18] http://www.homecardiographics.com/EcgI2.html
[19] http://www.medhelp.org/forums/cardio/archive/2294.html
[20] S.F. Morrison, “Differential control of sympathetic outflow,” Am. J. Physiol., 281:R683-R698, 2001.
[21] H.J. Häbler, W. Jänig, M. Michaelis, “Respiratory modulation in the activity of sympathetic neurons,” Progress in Neurobiology, 43:567-606, 1994.
[22] M.V. Pitzalis, F. Mastropasqua, F. Massari, A. Passantino, R. Colombo, A. Mannarini, C. Forleo, P. Rizzon, “Effect of respiratory rate on the relationships between RR interval and systolic blood pressure fluctuations: a frequency- dependent phenomenon,” Cardiovascular Research, 38:332-339, 1998.
[23] M. Kollai, G. Jokkel, I. Bonyhay, J. Tomcsanyi, A. Naszlady, “Relation between baroreflex sensitivity and cardiac vagal tone in humans,” Am. J. Physiol., 266:H21-H27, 1994.
[24] J. Murata, K. Matsukawa, “Cardiac vagal and sympathetic efferent discharges are differentially modified by stretch of skeletal muscle,” Am. J. Physiol., 280:H237-H245, 2001.
[25] A. Malliani, M. Pagani, F. Lombardi, S. Cerutti, “Cardiovascular neural regulation explored in the frequency domain,” Circulation, 84(2):482-492, 1991.
[26] E.T. Cunningham Jr., W.J. Ravich, B.J. FRCP, M.W. Donner, “Vagal reflexed referred from the upper aerodigestive tract: and infrequently recognized cause of common cardiorespiratory responses,” Annals of Internal Medicine, 116:575-582, 1992.
[27] Task Force of The ESC/ASPE, “Heart rate variability: standards of measurement, physiologically interpretation, and clinical use,” Ann. Noninvasive Electrocardiol., 1(2):151-181, 1996.
[28] N.R. Lomb, “Least-squares frequency analysis of unequally spaced data,” Astrophysics and Space Science, 39:447-462, 1976.
[29] J.D. Scargle, “Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data,” Astrophys. J., 263:835-853, 1982.
[30] J.H. Horne, S.L. Baliunas, “A prescription for period analysis of unevenly sampled time series,” Astrophys. J., 302:757-763, 1986.
[31] P. Laguna, G.B. Moody, R.G. Mark, “Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals,” IEEE Trans. Biomed. Eng., 45(6):698-715, 1998.
[32] K.S. Shin, H. Minamitani, S. Onishi, H. Yamazaki, M.H. Lee, “The direct power spectral estimation of unevenly sampled cardiac event series,” Proceedings of the 16th Annual International Conference of the IEEE, 2:1254 -1255, 1994.
[33] P. Castiglioni, M. Di Rienzo, “On the evaluation of heart rate spectra: the Lomb periodogram,” Computers in Cardiology, 505-508, 1996.
[34] http://www.cbi.polimi.it/glossary/Lomb.html
[35] http:// www.mporzio.astro.it/~gianluca/phdthesis/node27.html
[36] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, “Numerical recipes in C: the art of scientific computing,” Cambridge Univ. Press, 575-584, 1992.
[37] A.L. Mark, R.G. Victor, C. Nerhed, B.G. Wallin, “Microneurographic studies of the mechanisms of sympathetic nerve responses to static exercise in humans,” Circ. Res., 57:461-469, 1985.
[38] J.S. Sanders, D.W. Ferguson, A.L. Mark, “Arterial baroreflex control of sympathetic nerve activity during elevation of blood pressure in normal man: dominance of aortic baroreflex,” Circulation, 77(2): 279-288, 1988.
[39] J.P. Saul, R.F. Rea, D.L. Eckberg, R.D. Berger, R.J. Cohen, “Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity,” Am. J. Physiol., 258:H713-H721, 1990.
[40] M. Pagani, N. Montano, A. Porta, A. Malliani, F.M. Abboud, C. Birkett, V.K. Somers, “Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans,” Circulation, 95:1441-1448, 1997.
[41] H.C. Hsiao, H.W. Chiu, S.C. Lee, T. Kao, H.Y. Chang, C.W. Kong, “Esophageal PP intervals for analysis of short-term heart rate variability in patients with atrioventricular block before and after insertion of a temporary ventricular inhibited pacemaker,” Int. J. Cardiol., 64:271-276, 1998.
[42] F. Censi, G. Calcagnini, S. Lino, S.R. Seydnejad, R.I. Kitney, S. Cerutti, “Transient phase locking patterns among respiration, heart rate and blood pressure during cardiorespiratory synchronization in humans,” Med. Biol. Eng. Comput., 39:416-426, 2000.
[43] F. Lombardi, B. Montano, M.L. Finocchiaro, T.G. Ruscone, G. Baselli, S. Cerutti, A. Malliani, “Spectral analysis of sympathetic discharge in decerebrate cats,” J. Auton. Nerv. Syst., 30:S97-S100, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top