跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧瑞民
研究生(外文):Jui-Min Teng
論文名稱:頸椎間融合器沉陷之有限元素法分析
論文名稱(外文):Finite Element Analysis in Cervical Interbody Fusion Cage Subsidence
指導教授:鄭誠功鄭誠功引用關係蔣明富蔣明富引用關係陳振昇陳振昇引用關係
指導教授(外文):Cheng-Kung ChengMing-Fu ChiangChen-Sheng Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:97
中文關鍵詞:頸椎有限元素法融合手術沉陷生物力學分析融合器
外文關鍵詞:cervical spinefinite element methodspinal fusionsubsidencebiomechanicscage
相關次數:
  • 被引用被引用:1
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
近年來,椎間融合器大量被使用,主要目的是為了配合脊椎融合手術以達到最佳的植骨融合率。但在臨床上發現,椎間融合器會因受力或其本身強度造成融合器沉陷進入椎體的情形發生,此現象將會造成椎體損壞、穩定不佳、植骨融合失敗等問題。有鑑於此,本研究針對頸椎融合器,以有限元素法分析其沉陷之生物力學機制。本研究以電腦斷層掃瞄片(3mm)獲得頸椎幾何外型,並以ANSYS 7.0有限元素軟體建構C4-6節完整椎體包括韌帶、椎間盤、小面關節等運動肢段,並與文獻數據驗證模型正確性。此外,再建立融合器幾何形狀,匯入有限元素模型中模擬融合術後的狀況。本研究據以探討數種可能影響沉陷量的變因,包括(1)不同受力作用(2)融合器外形(3)融合器材質(4)骨質密度(5)融合器置放位置。希望藉由分析結果,了解融合器沉陷發生的原因,提供臨床醫師作為手術時的參考。建構完成之頸椎模型與融合器模型,給予如文獻上相同負載與邊界條件,比對模型運動之活動度。結果顯示,本模型之活動度表現皆在文獻數據95%信賴區間內,由此確立模型合理性與正確性。進而將融合器置入椎體間,而椎間盤也完全清除,模擬因椎間盤退化或坍塌而進行融合步驟。本研究討論的五種變因,對於沉陷量影響效應結果如下:在不同作用力,後彎運動產生之沉陷量最為顯著,比平均沉陷量增加31.8%,其次為前彎(13.8%)、側彎(10.8%),影響最小為扭轉(低於平均沉陷量56.5%)。對於融合器外型分析,BAK融合器不管在上下節間或不同材料下,其沉陷量皆大於SOLIS融合器,平均增加率為6.6%,而BAK融合器多孔且螺紋之設計,亦造成最大應力值高於SOLIS融合器10.1%。而融合器材質在使用鈦合金材質時,相較於使用碳纖維材質,沉陷量高出11%,且最大應力平均增加33.8%。而在改變骨質密度以模擬骨質缺損,骨質密度減低(0.08g/cm3)的情況下,兩種融合器之沉陷量皆有增加的趨勢,平均增加量為21.2%。此外,置放位置不同時,置於上層椎節間(C4-5)之融合器沉陷量相較於下層(C5-6)有增加的趨勢,平均增加12.4%。融合器的併發症仍層出不窮,本研究只針對其中沉陷之問題進行探討。至於如何有效克服沉陷發生,建議在術後之復健,盡量減少後彎運動,避免大角度的動作。融合器外型的選擇,應盡量避免圓柱狀或多稜角之設計。融合器材質以使用接近骨質強度的材料為佳。患有骨質疏鬆症的病患,建議以補骨進行融合,避免因使用融合器造成過大的沉陷發生。融合器置放椎節越高,更需嚴加注意沉陷的可能。
Recently, cervical spine interbody fusion cages were used frequently, and the major function was to co-operate with the spinal fusion procedure to get better fusion rate. However, the fusion cage would subsidence in adjacent vertebral body caused by abnormal pressure or the cage stiffness. The situation will cause many problems like the vertebral body tear, stability decrease and fusion failure. Therefore, the purpose of this study uses the finite element method to analyze the biomechanics characteristics of subsidence of cervical fusion cages.
CT scanning with every 3mm per slide provided the geometry of cervical spine, and package software ANSYS 7.0 was used to construct C4-C6 intact vertebral body including motion segments like ligaments, discs, facet joint etc, and verified the model with previous published experimental papers. The fusion cage model was built directly in ANSYS, and imported into the cervical spine finite element model afterward to simulate the fusion situation postoperatively. This study discussed several factors causing subsidence, including (1) different loadings (2) the cage geometry (3) the cage material (4) bone mineral density (5) the placement position of cage. The results of this study can provide the information to surgeons for future surgical consideration. The cervical spine and fusion cages models constructed completely, and gave the same loads and boundary conditions as the previous published papers to compare the range of motions (ROM).
The results showed that the ROMs of the model fall in the 95% confidence interval comparing with the previous published papers. Hence, the rationality and validity of the model was confirmed. Next step, the cage was put into the interval of the body to simulates the fusion treatment procedures of disc degeneration or collapse. The results of the five controlled factors were as follows: under the different loadings, extension caused more remarkable subsidence than average value about 31.8%, next were flexion (13.8%), lateral bending (10.8%), then torsion (56.5% less than average). The analysis of the shape of cages showed that BAK subsidence higher than SOLIS average to 6.6%, no matter where be put into or what materials it was. The porous and thread design of BAK also caused the von-Mises stress higher than SOLIS to 10.1%. The material of cage using titanium alloy, compared with using carbon fiber, made the settlement higher to 11% and the stress increased to 33.8%. When decreasing the bone mineral density to 0.08 g/cm3 to simulate the osteopenia, the subsidence increased average to 21.2% in both cages. Compared with different position to put into the cage, the upper disc fusion (C4-5) generated higher settlement than lower (C5-6) average to 12.4%. The complications of cage emerge in an endless stream, and this study only aim at the subsidence problem. As for the effective way how to overcome these factors, when rehabilitating after fusion, reducing extension and avoiding bigger angular motion as possible as one can were suggested. The choice of the cage shape should keep off the cylinder or sharp angle design. It is relatively good by using the material close to the bone intensity to be the cage material. Osteoporosis Patient would be proposed to use the bone graft in order to avoid the cage sinking into vertebrale body. Finally, the upper fusion needs to put more attention to the subsidence happen.
1. Agrillo U, Mastronardi L, Puzzilli F: Anterior cervical fusion with carbon fiber cage containing coralline hydroxyapatite: preliminary observations in 45 consecutive cases of soft-disc herniation. J Neurosurg 96:273-276, 2002
2. ANSYS: User Manual Vol.Ⅲ Element Type, 2002
3. Adam C, Pearcy M, McCombe P,: Stress analysis of interbody fusion:finite element modelling of intervertebral implant and vertebral body. Clinical Biomechanics. 18(4):265-72, 2003 May.
4. Bagby GW: Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics 1988 Jun;11:931-934, 1988
5. Clausen JD, Goel VK, Traynelis VC, Scifert J: Uncinate processes and Luschka joints influence the biomechanics of the cervical spine: quantification using a finite element model of the C5-C6 segment. J Orthop Res 15:342-347, 1997
6. Chen CS, Cheng CK, Liu CL, Lo WH: Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical Engineering & Physics 2001 Sep;23:483-491, 2001
7. Cheng CK, Chen CS, Liu CL: Biomechanical analysis of the lumbar spine with anterior interbody fusion on the different locations of the bone grafts. Bio-Medical Materials & Engineering 2002;12:367-374, 2002
8. Chen CS, Cheng CK, Liu CL: A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine. Journal of Spinal Disorders & Techniques 2002 Feb;15:53-63, 2002
9. Cho DY, Liau WR, Lee WY, Liu JT, Chiu CL, Sheu PC: Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery 51:1343-1349, 2002
10. Chen CS, Feng CK, Tzeng MJ, Liu CL, Chen WJ, Cheng CK: Biomechanical analysis of the disc adjacent to posterolateral fusion with laminectomy in lumbar spine. Journal of Spinal Disorders & Techniques, 2004 (Impressed)
11. Cheng CK, Chen WJ, Chen CS, Chueh SC, Wang CC: Failure analysis of pedicle screw breakage on spinal instrumentation. Medical Engineering & Physics, 2004 (Accepted)
12. Furderer S, Schollhuber F, Rompe JD, Eysel P: [Effect of design and implantation technique on risk of progressive sintering of various cervical vertebrae cages]. Orthopade 31:466-471, 2002
13. Goel VK, Clausen JD: Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach. Spine 23:684-691, 1998
14. Hall SJ.” Basic Biomechanics “. 1995.
15. Homminga J, Weinans H, Gowin W, Felsenberg D, Huiskes R: Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine 2001 Jul 15;26:1555-1561, 2001
16. Joseph AB, Thomas AE, Sheldon RS.” Orthopaedic Basic Science : Biology and Biomechanics of the Musculoskeletal System” . 2000.
17. Kumaresan S, Yoganandan N, Pintar FA: Finite element analysis of the cervical spine: a material property sensitivity study. Clin Biomech (Bristol , Avon ) 14:41-53, 1999
18. Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Kuppa S: Biomechanical study of pediatric human cervical spine: a finite element approach. Journal of Biomechanical Engineering 2000 Feb;122:60-71, 2000
19. Kettler A, Wilke HJ, Claes L: Effects of neck movements on stability and subsidence in cervical interbody fusion: an in vitro study. J Neurosurg 94:97-107, 2001
20. Kandziora F, Pflugmacher R, Schafer J, Born C, Duda G, Haas NP, Mittlmeier T: Biomechanical comparison of cervical spine interbody fusion cages. Spine 26:1850-1857, 2001
21. Kandziora F, Pflugmacher R, Scholz M, Schafer J, Schollmeier G, Schnake KJ, Bail H, Duda G, Haas NP: [Experimental fusion of the sheep cervical spine. Part I: Effect of cage design on interbody fusion]. Chirurg 73:909-917, 2002
22. Kandziora F, Schollmeier G, Scholz M, Schaefer J, Scholz A, Schmidmaier G, Schroder R, Bail H, Duda G, Mittlmeier T, Haas NP: Influence of cage design on interbody fusion in a sheep cervical spine model. J Neurosurg 96:321-332, 2002
23. Logon DL. “A First Course in the Finite Element Method” (Third Edition) . 2002.
24. Lopez-Espina CG, Amirouche F, Bergin C. Multi-Level Cervical Fusion and its Effects on Disc Degeneration and Osteophyte Formation. 50th Annual Meeting of the Orthopaedic Research Society 2004. Poster No:1100
25. Moroney SP, Schultz AB, Miller JA: Analysis and measurement of neck loads. Journal of Orthopaedic Research 1988;6:713-720, 1988
26. Moroney SP, Schultz AB, Miller JA, Andersson GB: Load-displacement properties of lower cervical spine motion segments. Journal of Biomechanics 1988;21:769-779, 1988
27. Matge G: Cervical cage fusion with 5 different implants: 250 cases. Acta Neurochir (Wien ) 144:539-549, 2002
28. Natarajan RN, Chen BH, An HS, Andersson GB: Anterior cervical fusion: a finite element model study on motion segment stability including the effect of osteoporosis. Spine 25:955-961, 2000
29. Ng HW, Teo EC: Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading. J Spinal Disord 14:201-210, 2001
30. Ng HW, Teo EC, Lee KK, Qiu TX: Finite element analysis of cervical spinal instability under physiologic loading. J Spinal Disord Tech 16:55-65, 2003
31. Natarajan R, Deol G, Andersson GB, An HS. Biomechanical Changes at Adjacent-Level Segments after Anterior Cervical Discectomy and Fusion:Ramifications for Fusion Versus Disc Replacement. 50th Annual Meeting of the Orthopaedic Research Society 2004. Poster No:1095
32. Pitzen TR, Matthis D, Barbier DD, Steudel WI: Initial stability of cervical spine fixation: predictive value of a finite element model. Technical note. J Neurosurg 97:128-134, 2002
33. Panjabi MM, Pearson AM, Ito S, Ivancic PC, Wang JL: Cervical spine curvature during simulated whiplash. Clinical Biomechanics 2004 Jan;19:1-9, 2004
34. Totoribe K, Matsumoto M, Goel V.K, Yang S.J, Tajima N, Shikinami Y: Comparative biomechanical analysis of a cervical cage made of an unsintered hydroxyapatite particle and poly-L-lactide composite in a cadaver model. Spine 28:1010-1015, 2003
35. Wilke HJ, Kettler A, Claes L: Primary stabilizing effect of interbody fusion devices for the cervical spine: an in vitro comparison between three different cage types and bone cement. Eur Spine J 9:410-416, 2000
36. Wilke HJ, Kettler A, Goetz C, Claes L: Subsidence resulting from simulated postoperative neck movements: an in vitro investigation with a new cervical fusion cage. Spine 25:2762-2770, 2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top