跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/08/02 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張文忠
研究生(外文):Wen-Chung Chang
論文名稱:以聚乳酸/聚甘醇酸和膠原蛋白做為生物降解性基材的研究
論文名稱(外文):Studies of Polylactide/Polyglycolide and CollagenBased Biodegradable Materials
指導教授:王盈錦
指導教授(外文):Yng-Jiin Wang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:251
中文關鍵詞:聚乳酸聚甘醇酸膠原蛋白生物降解性交聯劑微粒組織工程基材
外文關鍵詞:PolylactidePolyglycolideCollagenBiodegradable crosslinkerMicrosphereTissue engineering scaffold
相關次數:
  • 被引用被引用:1
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
聚乳酸/聚甘醇酸及膠原蛋白是目前最重要的生物降解性材料,而開發新的合成方法及修飾技術,對上述材料做為組織工程基材的設計極為重要。本研究以此為目標,研究內容主要包含四個部份: (1).以Al(i-Bu)3催化劑開發新的合成方法,製備聚乳酸/聚甘醇酸及其共聚物材料。(2).以短鏈聚乳酸開發成生物降解性交聯劑,用以交聯膠原蛋白(3).利用幾丁聚醣做為一聚陽離子交聯劑,開發新穎的方法來製備膠原蛋白微粒。(4).利用褐藻酸鹽膠體微粒及能將膠體液化的原理,製備多孔狀之聚乳酸/膠原蛋白基材。
首先利用催化劑Al(i-Bu)3開發一新穎的方法,合成一系列各種分子量及共聚比的聚乳酸/聚甘醇酸及其共聚物。以整體聚合可得到分子量範圍從2,000至60萬的高分子量聚乳酸;若以甲苯為溶劑經溶液聚合方式則可得到分子量近50萬之聚合物;而以Sn(Oct)2為催化劑反應,最高只可得分子量近36萬的聚乳酸。此方法比較於使用催化劑Sn(Oct)2,具有反應程序簡單、時間短、較低溫,即可得到高分子量及高轉化率的聚乳酸,且所製備的高分子量聚乳酸具有良好的機械性質。
以lactide合成一系列具可調控性分子量且尾端含-OH或-COOH基團的短鏈聚乳酸(oligolactides),並分別利用1,1’carbonyl- diimidazole(CDI)或N- hydroxysuccinimide(NHS)活化其尾端,開發成生物降解性交聯劑,用以交聯膠原蛋白纖維。結果顯示,以短鏈聚乳酸交聯劑交聯的膠原蛋白纖維材料,隨著交聯劑濃度的增加,其中性溶解度降低、交聯指數增加、而抗collagenase分解的能力也增強。此種交聯劑其鏈長具可調控性,能用於修飾天然材料,應用於生醫領域上,深具醫藥應用價值與發展潛力。
我們也合成1-苯基肉桂木亞烯基乙酸(□-phenylcinnamyl- ideneacetic acid)光敏基,經N-hydroxysuccinimide活化光敏基尾端後,與膠原蛋白分子鍵結形成一具有感光性膠原蛋白分子。利用水銀燈照射產生[2+2]環化架橋反應形成膠原蛋白分子交聯結構。另一方面,也利用其它交聯劑PEG-CDI、glutaraldehyde及genipin,同樣來交聯修飾膠原蛋白纖維,並與上述兩類交聯方式進行分析比較。實驗結果顯示,我們可利用不同交聯劑及交聯條件的控制,得到一系列具有不同降解時間及型態的膠原蛋白基材,將能進一步擴展此類材料在生醫領域的應用範圍。
另一方面,結合膠原蛋白與聚乳酸兩類材料的優點,發展做為骨填補材料、組織工程基材上的應用。在骨填補材料方面,我們避免使用化學交聯劑的缺點,利用幾丁聚醣物理方式的處理或添加,開發一新穎的方法來製備膠原蛋白/磷酸鈣複合材料微粒。結果顯示,所製備的複合材料具有類似骨組織的成份及膠原蛋白纖維網狀結構;適當的機械強度,可用來包覆、固定各種不同的骨生長因子;以及具有可注射式或進一步依需求製作成不同型式的基材等優點。另外動物實驗結果也指出,此複合材料具有良好的生物相容性及適當的生物分解性,能發展作為骨填補材、組織工程及藥物制放基材等生醫上的應用。最後在組織工程基材方面,利用褐藻酸鹽膠體微粒及能將膠體液化的原理,製備多孔狀之聚乳酸基材,並將膠原蛋白導入於基材中,增加細胞的移入與吸附。結果顯示,上述基材具有互相連結之巨孔洞、高孔隙度以及結構穩定等特性,細胞及血管能在此基材中增生良好。此類材料結合聚乳酸與膠原蛋白兩類材料的優點,具有良好的生物相容性及適當的機械性質,能發展作為組織工程基材之應用。
Abstract
Polylactide/polyglycolide and type I collagen are the most important biodegradable macromolecules used for tissue engineering today. The development of new methodology for the synthesis and modification of these polymers are vital to the design of future tissue scaffolds. With these aims, the works of this study include (1) the synthesis and characterization of poly(lactide), poly(glycolide) and their copolymers using catalyst Al(i-Bu)3, (2) development of new crosslinking agents based on oligolactides for collagen, (3) development of collagen microsphere using chitosan as a polycationic macro crosslinker, and (4) development of porous tissue scaffold using alginate microspheres as porogen.
For the development of novel synthetic method for polylactide/polyglycolide, lactide and glycolide were polymerized using Al(i-Bu)3 catalyst. This polymerization reaction was conducted at lower temperature and shorter reaction time, as compared with that using Sn(Oct)2 catalyst, to yield polylactide of molecular weight 2~600 kDa in bulk process and ~500 kDa. in toluene.
A series of oligolactides with specific molecular weight with terminal ends of –OH or -COOH were synthesized for the development of new cross linkers for collagen. The terminal groups of these polymers can be chemically activated with N-hydroxysuccinimide or 1,1’ carbonyldiimidazole to form macro crosslinkers. The application of this end-group activated oligolactides was demonstrated by its cross linking reaction on the suspended collagen fibers. Fibrillar collagen cross linked with oligolactide resulted in a significant decrease of neutral solubility, increase of fixation index and greater resistance to collagenase degradation by increasing the concentration of crosslinkers as compared to the non-crosslinked control. These new cross-linkers can be changed in length and thus have great a potential for cross-linking reaction of biomedical polymers.
We have also synthesized □-phenylcinnamylideneacetic acid and coupled it to collagen for crosslinking collagen fibers by light irradiation. In addition, collagen fibers were cross linked with activated PEG、glutaraldehyde and genipin, and compared with the oligolactide- and □-phenylcinnamylideneacetate-collagen. The results showed that a series of collagen matrices can be obtained with various properties of degradation rate and morphologies by chossing different cross linkers. This broadens the spectrum of the materials used for clinical applications.
Two tissue scaffolds – collagen microspheres and porous polylactide matrix were fabricated. We have developed a novel method of preparing microspheric composite of collagen and □-calcium phosphate/chitosan by a CaCl2/alginate-chitosan system in order to improve the mechanical strength of microsphere without involving chemical cross linking reaction. The resulted composite microspheres served as a degradable bone-mimic biomaterial, and expressed excellent biocompatibility in vivo. These microspheres can be used as carriers for cells and growth factors, and can be injected for bone repair. Alternatively, they can be processed into different shapes of tissue scaffolds for bone graft applications.
Finally, a novel fabrication method of macrocroporous biodegradable polymer scaffolds using alginate bead as a porogen additive was developed in this study. This scaffold had interconnecting pores that can be filled with collagen fibers in its pores when alginate beads were used in fabrication. In vivo implant study showed that blood vessel grew into the pore structure. This hybrid matrix of poly(lactide) and collagen are excellent scaffold for tissue engineering applications.
Alamelu, A., and Rao, K.P. Carbohydrate Polymers. 24: 215,1994.
Allen, H.G. J. Phys.D5:331,1972.
Anselme, K., Petite, H., and Herbage, D. Inhibition of calcification in vivo by acyl azide crosslinking of a collagen-glycosaminoglycan sponge. Matrix. 12:264-273,1992.
Arvanitoyannis, I., Nakayama, A., Kawasaki, N. and Yamamoto, N., Novel star-shaped polylactides with glycerol using stannous octoate or tetraphenyl tin as catalyst: 1, synthesis, characterization and study of their biodegradability. Polymer. 36(15):2947-2956,1995.
Arvanitoyannis, I., Nakayama, A., Kawasaki, N. and Yamamoto, N., Novel polylactides with aminopropanediol or amino hydroxymethylpropanediol using stannous octoate as catalyst; synthesis,characterization and study of their biodegradability:2. Polymer. 36(11):2271-2279,1995.
Athanasiou, Kyriacos A., Niederauer, Gabriele G., and Mauli, Agrawal C. Biomaterial.17(2):93-102,1996.
Bae, Y.H., et al. Biodegradable amphiphilic multiblock copolymers and their implications for biomedical applications. Journal of controlled release. 64:3-13,2000.
Balazs, A. Medical applications of hyaluronan and its derivatives. Cosmetic and Pharamaceutical applications of polymers, Plenum Press, NY., 293,1990.
Barrera, D.A., Zylstora, E., Cansburg, P.T., and Langer, R. J.Am. Chem.Soc. 115:110,1993.
Beauchamp, C.O., Gonias, S.L., Menapace D.P. and Pizzo, S.V. A new procedure for the synthesis of polyethylene glycol-protein adducts; effects on function, receptor recognition, and clearance of superoxide dismutase, lactoferrin, and α2-Macroglobulin. Analytical Biochemistry. 131:25-33,1983.
Bostman, O., et al. Int.Orthop(SICOT).14:1-8,1990.
Bostman, O., et al. J.Bone.Joint.Surg.72-B:592-596,1990.
Breitbart, S., Graride, D.A., and Keler, R. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast.Reconstr.Surg. 101(3): 567,1998.
Breitenbach, A., and Kissel, T. Biodegradable comb polyesters: Part1 Synthesis, characterization and structural analysis of poly(lactide) and poly(lactide-co-glycolide) grafted onto water-soluble poly(vinyl alcohol) as backbone. Polymer. 39(14):3261-3271,1998.
Buchholz, B. GP 433, 542 A2, 1991.
Cater, C.W. The enaluation of aldehydes and other difunctional compounds as crosslinking agents for collagen. J.Soc. Leather. Trades.Chem. 47: 269-271,1963.
Chamberlain, L.J., Yannas, I.V., Arrizabalaga, A., Hsu, H.P., Norregaard, T.V., and Spector, M. Biomaterials. 19:1393,1998.
Chang, S.J., Lee, C.H., and Wang, Y.J. Microcapsules prepared from alginate and a photosensitive poly(L-lysine). Journal of Biomaterials Science, Polymer Edition. 10(5):531-42,1999.
Charulatha, V., and Rajaram, A. Crosslinking density and resorption of dimethyl suberimidate-treated collagen. J.Biomed.Mater.Res 36: 478-486,1997.
Charulatha, V., and Rajaram, A. Dimethyl 3,3’-dithiobispropionimidate: a novel crosslinking reagent for collagen. J.Biomed.Mater.Res 54: 122-128,2001.
Chen, P.E. Polymer.Eng.Sci. 11:51,1971.
Chiang,TM., Arch.Biochem.Biophys. 302:56,1993.
Chu, G. Preparation of collagen hydroxyapatite matrix for bone repair. US Patent: 4776890,1988.
Chu, G.., Nathan, R., and Seyedin, S. Inductive collagen-based bone repair preparations. US Patent: 4888366,1989.
Damink, L.H.H. Olde., Damink L.H. Olde., Dijkstra, P.J., van Luyn M.J., van Wachem, P.B., Nieuwenhuis, P., and Feijen, J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials. 20:283-90,1996.
Damink, L.H.H. Olde., Dijkstra, P.J., Feijen, J., Van Luyn, M.J.A., Van Wachem, P.B., and Nieuwenhuis, P. In vitro degradation of dermal sheep collagen crosslinked using a water-soluble carbodiimide. Biomaterials.17:679-684,1996.
Damink, L.H.H. Olde., Dijkstra, P.J., van Luyn, M.J.A., van Wachem, P.B., et. al. Cross-linking of dermal sheep collagen using using a water-soluble carbodiimide. Biomaterials 17:765-773,1996.
Dubois, Ph., Jacobs, C., Jerome, R., and Teyssie, Ph. Marcomolcules. 24:2266-2270,1991.
Ducheyne, P., and Lemons, J.E. Bioceramics: Material characteristics versus in vivo behavior. Annals NY Acad.Sci. 523,1988.
Flautre, G., Pasquire, M.C., Blary, K., and Anselme, P.H. Evaluation of hydroxyapatite power coated with collagen as an injectable bone substitute; microscopic study in rabbit. Journal of materials science: materials in medicine. 7:63-67,1996.
Francis Suh, J.K., and Matthew, Howard W.T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering : a review. Biomaterials. 21:2589-2598,2000.
Frauke Pistel, Karin., Breitenbach, Armin., Zange-Volland, Regina., and Kissel, Thomas. Brush-link branched biodegradable polyesters, part III protein release from microspheres of poly(vinyl alcohol)-graft-poly(dl-lactic-co-glycolic acid). Journal of controlled release 73:7-20,2001.
Freed, L.G., Marquis, J.C., Nomia, A., Emmanual, J., and Langer, R.J.Biomed.Mater.Res. 27:11,1993.
Fukuzaki, H., Yoshida, M., Asano, M., and Kumakura, M. Polymer. 31(10):2006,1990.
Gaserod, O., Smidsrod, O., Skjak-Brek, G. Microcapsules of alginate-chitosan-I A quantitative study of interaction between alginate and chitosan. Biomaterials. 19:1815-1825,1998.
Gibson, G.J., Schor, S.L., and Grant, M.E.J.Cell.Biol. 93:767,1982.
Giordano, G..G.., et al. Invest.Ophthalmol.Vis.Sci. 34:2743-2751,1993.
Golomb, G., Schoen, F.J., Smith, M.S., Linden, J., Dixon, M., and Levy, R.J. The role of glutaraldehyde-induced cross-links in calcifcation of bovine pericardium used in cardiac valve prostheses. Am.J.Pathol. 127:122-130,1987.
Gorham, S.D., Collagen, in: D.Byrom(ED.), Biomaterials,Stockton Press,NewYork, 55-122,1991.
Habeeb, A.F.S.A. Determination of hydroxyproline in tissue and protein by trinitrobenzenesulfonic acid. Anal.Biochem. 14:328-336,1966.
Heckman, JD., Boyan, BD., Aufdemorte, TB., and Abbott, J.T. J.Bone.Joint.Surg. 74-A:750,1991.
Hench, H.H., and Ethridge, E.C. Biomaterials-an interfacial approach. AP, New York,1982.
Hirvensalo, E. Acta.Orthop.Scand. 60:601-606,1989.
Hollinger, J.O., Brekke, J., Gruskin, E., and Lee, D. Clin.Orthop. & Rel.Res. 324:55,1996.
Hollinger, J.O., Clinical Orthopacdics and Related Research. 207: 290-305,1986.
Horton, C.E., Adamson, J.E., et al. Am Surg. :729-731,1974.
Hsu, F.Y., Chueh, S.C., and Wang, Y.J. Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials. 20:1931-1936,1999.
Hsu, F.Y., Tsai, S.W., Wang, F.F., and Wang, Y.J. The collagen-containing alginate/poly(L-lysine)/alginate microcapsules. Art.Cells,Blood Subs. and Immob. Biotech. 28:147-154,2000.
Http://www.aw.com/mathews/ch06/fi6p13ad.htm
Hu, S.G., and Lin, H.J. Structural analysis and degradation behavior in poly(l-lactide)/ polyethylene glycol polymers. J.Appl.Polym.Sci. 51:473,1994.
Huang-Lee, L.L.H., and Nimni, M.E. Fibroblast contraction of collagen matrices with and without covalently bound hyaluronan. J.of Biomat.Sci.Poly.E. 5:99,1993.
Huang-Lee, L.L.H., and Nimni, M.E. Preparation of type I collagen fibrillar matrices and the effects of collagen concentration of fibroblast contraction. Biomed.Eng.Appl.Basis.Comm. 5:664-75, 1993.
Hubbell J A, Biomaterials in tissue engineering. Biotechnology. N Y. 13(6):565,1995.
Hubbell, J.A., Palsson, B.O., and Papoutsakis, E.T. Biotechnol.Bioeng. 43:541-682, 1994.
Huh, Kang Moo., Bae, You Han. Synthesis and characterization of poly(ethylene glycol)/ poly(l-lactic acid) alternating multiblock copolymers. Polymer. 40:6147-6155,1999.
Hyon, S.H., and Ikada, Y. Biomaterials. 18:1503-1508,1997.
Ignatius, AA., Augat, P., Ohnmacht, M., Pokinskyj, P., Kock, H.J., and Claes, L.E. A new bioresorbable polymer for screw augmentation in the osteosynthesis of osteoporotic cancellous bone: a biomechanical evaluation. J.Biomed.Mater.Res. 58: 254-260,2001.
Ikada, Y., et al. Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene gylcol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors. Biomaterials. 16:725,1995.
Ishaug, S.L., Crane, G.M., Gurlek, A., et al. Ectopic bone formation by marrow stromal osteoblast transplantation using poly (DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J.Biomed.Mater.Res. 36(1):1,1997.
Jacobsen, S., et al. Polylactide(PLA)-A new way of production. Polymer engineering and science. 39(7),1999.
Jedlinski, Z., Kurrok, P., Walach, W., Janeczek, H., and Raddecka, J., Makromol.Chem. 194:1681,1993.
Jeyanthi, R., and Rao, K.P. Biomaterials. 11:238,1990.
Jeyanthi, R., and Rao, K.P. J.Controlled.Rel. 13:91,1990.
Jeyanthi, R., and Rao, K.P. J.Pharm.Pharmacol. 43:60,1991
Juutilainen, T., Patiala, H., Ruuskanen, M., and Rokkanen, P. Comparison of costs in ankle fractures treated with absorbable or metallic fixation devices, Archives of Orthopaedic & Trauma Surgery. 116 (4):204-8,1997.
Kawakami, T., Antoh, M., Hasegawa, H., Yamagishi, T., Ito, M., and Eda, S. Experimental study on osteoconductive properties of a chitosan–boned hydroxyapatite self-hardening paste. Biomaterials. 13 (11):759-763,1992.
Kenley R.A., et al. Marconmolecules. 20:2398-2403,1987.
Kenley, R.A., Yim, K., Abrams, J., Ron, E., Turek, T., Marden, L.J., and Hollinger, J.O. Pharmaceutical.Res. 10:1393-1401,1993.
Khor, E. Method for the treatment of collagenous tissues for bioprostheses. Biomaterials. 18:95-105,1997.
Kim, S.H., Han, Y.K., Ahn, K.D., Kim. Y.H. and Chang, T. Makromol.Chem. 94(12):3229,1993.
Kinoshita, Y., Kirigakubo, M., Kobayashi, M., Tabata, T., Shimura, K., and Ikata, Y. Biomaterial. 4:729,1993.
Kissel, T., Brich, Z., Bantle, S., Lancranjan, I., Nimmarfall, F., and Vit, P. J.Control.Rel. 16:27-42,1991.
Kleine J. BP:799291,1957.
Korhonen, H., Helminen, A., and Seppala, J.V. Synthesis of polylactides in the presence of co-initiators with different numbers of hydroxyl groups. Polymer. 42:7541-7549,2001.
Kostelnik, R.J., et al. Polymeric delivery systems. New York : Gordon and Breach :121-138,1978.
Kricheldorf, H.R., and Boettcher C. ibid. 194:1665,1983.
Kricheldorf, H.R., and Kreiser, I. ibid. 188:1861,1987.
Kricheldorf, H.R., Kreiser-Saunders, I., and Boettcher, C. Polymer. 36(6):1253-1259, 1993.
Kricheldorf, H.R.,.and Dunsing, R. Macromol.Chem. 187:1611,1986.
Kulkarni, R.K., Pani, K.C., et al. Arch.Surg. 93:839-843,1966.
Lee, C.H., Singla, A., and Lee, Y. Biomedical applications of collagen. International Journal of Pharmaceuties. 221:1-2,2001.
Lee, J.M., Pereira, C.A., and Kan, L.W.K. Effect of molecular structurs of poly(glycidyl ether) reagents on crosslinking and mechanical properties of bovine pericardial xenograft materials. J.Biomed.Mater.Res. 28:981-992,1994.
Lee, S,C., Shea, M., Battle, M.A., et al. J.Biomed.Mater.Res. 28:1149,1994.
Lee, Yong-Moo., et al. The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J.periodontal. 71:418-424,2000.
Lee, Yong-Moo., et al. Tissue engineered bone formation using chitosan/tricalicum phosphate sponges. J.periodontal. 71:410- 417,2000.
Li, S.T. Biological Biomaterials: Biomaterials (Collagen), in “The Biomedical Engineering Handbook” edit by Bronzino, J.D.1995.
Li, S.T. Collagen biotechnology and its medical applications, in “Biotechnological Polymers: Medical, pharmaceutical and industrial applications” edit by Gebelein, C.G. 66-81,1996.
Li, Y., and Kissel, T. Synthesis, characteristics and in vitro degradation of star-block copolymers consisting of l-lactide, glycolide and branched multi-arm poly(ethylene oxide). Polymer. 39(18):4421-4427,1998.
Li, Y.X., and Feng, X.D. Macromol.Symp. 33:253,1990.
Lin, F.H., et al. Biological effects and cytotoxicity of the composite by tricalcium phosphate and glutaraldehyde cross-linked gelation. Biomaterials. 19:905-917, 1998.
Liu, S., Peulve, P., Jin, O., Boisset, N., Tiollier, J., Said, G.., and Tadie, M. Journal of Neuroscience Research. 49:4259,1997.
Loke, W.K., Khor, E., Wee, A., Teoh, S.H., and Chian, K.S. Hybrid biomaterials based on the interaction of polyurethane oligomers with porcine pericardium. Biomaterials. 17:2163-2172,1996.
Lubert, S., Biochemistry, Freeman, New York. 1988.
Madihally, Sundararajan V., Matthew, Howard W.T. Porous chitosan scaffolds for tissue engineering. Biomaterials. 20:1133-1142,1999.
Marcus, AJ., Ratnoff, O.D., and Forbes, C.D. Disorders of hemostasis.,1991.
Matsuda, S., Iwata, H., Se, N., Ikada, Y. Bioadhesion of gelatin films crosslinked with glutalaldehyde. J.Biomed.Mater.Res 45:20-7,1999.
Matsuda, T., and Inoue, K. Novel photoreactive surface modification technology for fabricated devices, ASAIO Transactions, 36 M161,1990.
Matsuda, T., et al., Newly designed tissue adhesion prevention technology based on photocurable mucopolysaccharides, ASAIO J.39,M327,1993.
Middleton, J.C., and Tipton, A. Synthetic Biodegradable Polymers as Medical Devices. Medical Plastics and Biomaterials Magazine. 5:30-39,1998.
Middleton, J.C., and Tipton, A.J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 21:2335-2346,2000.
Mikos, A.G. Laminated Three-Dimensional Biodegradable Foams for use in Tissue Engineering. Biomaterials. 14:323-330,1993.
Mikos, A.G., Lyman, M.D., and Freed, L.E. Welting of poly(L-lactic acid ) and poly(DL-lactic –co-glycolic acid) foams for tissue culture. Biomaterials. 15(11): 55,1994.
Mikos, A.G.. Preparation and Characterization of Poly (L-Lactic acid) Foams. Polymer. 35:1068-1077,1994.
Mohammadi-rovshandeh, J.,et al. Synthesis and characterization of novel ABA triblock copolymers from l-lactide, glycolide, and PEG. Journal of applied polymer science. 74:2004-2009,1999.
Moon, A.G., and Tranquillo, R.T. Fibroblast-populated collagen microsphere assay of cell traction force: part1. continuum model. AICHE.J. 39: 163,1993.
Mooney, D.J., Mazzoni, C.L., Breue, R.C., McNamara, K., Hern, D., Vacanti, JP. and Langer, R. Biomaterials. 17:115,1996.
Mooney, D.J., Organ, G., Vacanti, J.P, and Langer, R. Cell transplantation. 3(2):203,1994.
Moritera, T., et al . Invest Ophthalmol Vis Sci. 33:3125-3130,1992
Muschler G.F., Shigeharu, Negami., Hyodo, Akira., Gaisser,David., Easley, Kirk., and Kambic, Helen. Evolution of collagen ceramic composite graft materials in a spinal fusion model. Clinical orthopaedice and relared research. 328:250-260,1995.
Nakamura, S., et al. Polylactide screws in acetabular osteotomy. Acta.Ortho.Scand. 64:301,1993.
Nikolovski, J., and Mooney, D.J. Smooth Muscle Adhesion to Tissue Engineering Scaffolds. Biomaterials 21:2025-2032,2000.
Nimni, M.E.,,et al. Collagen types: structure, distribution, and functions, in Collagen. I., II., III.,1988.
Nishi, C., Nakajima, N., and Ikada, Y. In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J.Biomed.Mater.Res. 29:829-834,1995.
Nunes R. W., et al., Influence of molecular weight and molecular weight distribution on mechanical properties of polymers. Polymer engineering and science, march 1982, Vol. 22, No.4 205-228.
Ohya, Y., Takei, T., et al. Release behaviour of 5-fluorouracil from chitosan-gel microspheres immobilizing 5-fluroouracil derivative coated with polysaccharides and their cell specific recognition. J.microencapsulation. 10(1):1-9,1993.
Pachence, J.M. J.Biomed.Mater.Res. 3:35,1996.
Palit, S.R., et al. J.Macromol.Sci. C2:225,1968..
Partio, E.K., et al. Totally absorbable screws in fixation of subtalar extra articular arthrodesis in children with spastic neuromuscular disease: preliminary report of a randomized prospective study of fourteen arthrodeses fixed with absorbable or metallic screws. J.Ped.Orthop. 12:646,1992.
Pazzano, D. Study of Chondrogenesis in a Perfusion Bioreactor. MQP. 99E009M,1999.
Penning, J.P., Grijpma, D.W., and Pennings, A.J., J.Mater.Sci.Lett. 12:1048,1993.
Pentti, Rokkanen., et al., Absorbable Devices in the Fixation of Fractures, J. Trauma, 40(3)Suppl.:123S-127S,1996.
Petite, H., Rault, I., Huc, A., Menasche, P.H., and Herbage, D. Use of the acyl azide method for crosslinking collage-rich tissues such as pericardium. J.Biomed.Mater.Res. 24:179-187,1990.
Pize, K.A., Pharriss, B.B., Smestad, T.L., and Hensrick, D. US Patent 4992226,1991.
Plast. Reconstr. Surg., 100: 297,1997.Rafler, G., et.al. Acta.Polym.41:328,1990.
Rafler, G., et.al. Acta.Polym.41:328,1990.
Ramdas, M., Dileep, K.J., Anitha, Y., et al. Aliginate encapsulated bioadhesive chitosan microspheres for intestinal drug delivery. Journal of biomaterials applications. 13: 290-296,1999.
Rao, K.P., and Sastry, T.P. Controlled release bioactive materials. In.Proc.Int.Symp 16:406,1989.
Reed, A.M., and Gilding, D.K.Polymer.l22:494-498,1981.
Regina K.P., Rositza S., Blagovest B., Modification of Lowry’s method for collagen concentration measurement. J.Biochem.Biophys.Methods 32:33-43,1996
Ross, J.M. Cell-Extracellular Matrix Interactions. Frontiers in Tissue Engineering. New York: Pergamon. 15-27,1999.
Rossler, B., Kreuter, J., and Scherer, P. Collagen microspheres: preparation and properties. J.of Microencapsulation.12 (1):49-57,1995.
Rotter, N. Aigner, J., Naumann, A., Planck, H., Hammer C., Burmester, G. and Sittinger, M. Cartilage Reconstruction in Head and Neck Surgery: Comparison of Resorbable Polymer Scaffolds for Tissue Engineering of Human Septal Cartilage. Journal of Biomedical Materials Research 42:347-56,1998.
Schendel, S., Cholon, A., and Bresnick, S., A ceramic containing crosslinked collagen as a new cranial onlay and inlay materials. Ann.Plast.Surg.38:158-162,1997.
Schindler, A., et.al. Biodegradation polymers for sustained drug delivery. In contemporary topics in polymer science. 2.Eds: 251-289,1977
Schindler, A., et.al. J.Poly.Sci.Polym.Chem. Ed. 17:2593-2599,1979.
Sionkowska, A. Photochemical transformations in collagen in the presence of melanin. Journal of Photochemistry and Photobiology A: Chemistry. 124:91-94,1999.
Song, C.S., Sun, H.F., and Feng, X.D. Polym.J. 19(5):485-491,1987.
Speer, D.P., Chvapil, M., et al. Biological effects of residual glutaraldehyde in glutraaldehyde tanned collagen biomaterials. J.Biomed.Mater.Res. 14:753-764,1980.
Storey, R.F., and Shoemake, K.A., Polym.Bull. 31:331,1993.
Sung, H.W., Chen, C.C., Huang, R.N., Hsu, J.C., and Chang, W.H. In vitro surface characterization of a biological patch fixed with a naturally occurring crosslinking agent. Biomaterials. 21:1353-1362,2000.
Sung, H.W., et al. Effects of fixation conditions on cross-linking characteristics of a biological patch fixed with epoxy compound. Biomedical Engineering- Application, Basis & Communications. 6:540-547,1994.
Sung, H.W., Huang, R.N., Huang, L.L.H., and Tsai, C.C. In vitro evaluation of cytotoxicaity of a naturally occurring crosslinking reagent for biological tissue fixation. J.Biomater.Sci.Polym.Edn. 10:63-78,1999.
Sung, H.W., Shih, J.S., and Hus, C.S. Crosslinking characteristics of porcine tendons: effects of fixation with glutaraldehyde or epoxy. J.Biomed.Mater.Res. 31:511-518,1996.
Takaoka, K., Nakahara, H., Yoshikawa, H., et al. Clin.Orthop. 234:250,1988.
TenHuisen, K.S., Martin, R.I., Klimkiewicz, M., and Brown, P.W. Formation and properties of a synthesis bone composite: hydroxyapatite- collagen. Journal of biomedical materials research. 29:803-810,1995
Tice, T.R., et al. J.Controlled. 2:343-352,1985.
Tranzer, M.L., and Kimura, S. Phylogenetic Aspects of collagen structure and function, in Collagen. II.,1988.
Tsai, S.W., Jeng, M.J., Tsay, R.Y., and Wang, Y.J. Gel beads composed of collagen reconstituted in alginate. Biotechnology techniques. 12:21-23.1998.
Tu, R., et al., A preliminary study of the reaction mechanism of collagen fixation with a polyepoxy fixative. Int.J.Artif.Organs. 16:533-544,1992.
Tu, R., Shen, S.H., et al. Fixation of bioprosthetic tissues with monofunctional and multifunctional polyepoxy compound. J.Biomed.Mater.Res 28:677-684,1994.
Vacanti, C.A., and Mikos, A.G. Tissue Eng. 1:147-228,1995.
Van Dijk, J.A.P.P., et al. J.Poly.Sci.Polym. Chem.Ed. 21:197,1983.
Van Luyn, M.J.A., Van Wachem, P.B., Damink, L.Olde., Dijk-stra, P.J., Feijen, J., and Nieuwenhuis, P. Relations between in vitro cyto-toxicity and crosslinking dermal sheep collagens, J.Biomed.Mater.Res 26:1091-1110,1992.
Van Susante, J.L.C., Buma, P., Van Osch, Gerjo J.V., Diny, V., Van der Kraan, Peter M., Van der Berg, Wim B., and Homminga, George N. Acta Orthop.Scand. 66(6):549,1995.
Vasantha, R., Sehgal, P.K., and Rao, K.P. Int.J.Pharm. 47:95,1988.
Vert, M. Franch Patent:7829978,1978.
Vert, M., Schwach, R., Engel, R., and Condane, J. J.Control.Rel. 53:85-92,1998.
Visser, C.E., Voute, A.B.E., Oosting, J., Boon, M.E., Kok, L.P. Microwave irradiation and crosslinking of collagen. Biomaterials. 13:34-37,1992.
Wake, M.C., Gerecht, P.D., Lu, L., and Mikos, A.G. Biomaterials. 19:1255,1998.
Wallace, D.G.., McMullin, H., Chu, G. US Patent:5204382,1993.
Wan, A.C., Khhor, E., Wong, J.M., and Hastings, G.W. Biomaterials. 17:1529,1996.
Wang, R.Z., Chi, H.B., Lu, H.B., Wen, C.L., Ma, H.D.Li,1995. Synthesis of nanophase hydroxyapatite/collagen composite. Journal of materials science letters 14:490-492,1995.
Wang, Y.J., et al. ROC.Patent:127311I,2001.
Weadock, K., Olson, R.M., Silver, F.H. Evaluation of collagen crosslinking techniques. Biomater.Med.Devices.Artif.Organs 11:293-318,1983.
Weadock, K.S, Miller, E.J., Bellincampi, L.D., Zawadsky, J.P., and Dunn, M.G. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J.Biomed.Master.Res 29:1373-9,1995.
Weadock, K.S., Miller, E.J., Keuffel, E.L., and Dunn, M.G. Effect of physical crosslinking methods on collagen-fiber durability in proteolytic solution. J.Biomed.Master.Res. 32:221-226,1996.
Whang, K., Thomas, C.H., Healy, K.E, and Nuber, G.. A Novel Method to Fabricate Bioabsorbable Scaffolds. Polymer. 36:837-842,1995.
Widmer, M.S., and Mikos, A.G.. Fabrication of Biodegradable Polymer Scaffolds for Tissue Engineering. Frontiers in Tissue Engineering. New York: Pergamon. 107-20,1998.
Wise. D.L., J.Pham.Pharmacol. 30:686-689,1978.
Wiseman, DM., Pharm, M.R., Rovee, D.T., Alvarez, O.M. Wound healing edit by Cohen,IK., Diegelmann RF., Lindblad, WJ.,1992.
Witzke D R, Naragan R, Kolstad J.J, Marcromolecules. 30:7075-7085,1997.
Woesner, J.F. The determination of hydroxyproline in tissue and protein samples containing small proportion of this imino acid. Arch.Biochem,Biophys, 93:440-447,1961.
Wolfgang, F. Review article collagen-biomaterial for drug delivery. European journal of pharmaceuties and biopharmaceutics. 45:113-136,1998.
Xi, T., Ma, J., Tian, W., Lei, X., Long, S., Xi, B., Prevention of tissue calcification on bioprosthetic heart valve by using epoxy compound: a stydy of calcification teat in vitro and in vivo, J.Biomed.Mater.Res 26:1241-1251,1993.
Yasuaki, Ogawa. J.Biomater.Polymer.Edn. 8(5):391-409,1997.
Yasuda, H., and Ihara, E. Macromol.Chem.Phys. 196(8):2417-2441,1995.
Yasui N, Osawa S, Ochi T, Nakashima H, Ono K. Exp. Cell Biol. 50: 92,1982.
Yoshizato, K., Nishikawa, A., and Taira, T. Functionary polarized layers formed by epidermal cells on a permeable transparent collagen film. J.Cell.Sci. 91:491-499,1998.
Zeeman, R., Dijkstra, P.J, Wachem, P.B., van, Luynb M.J.A., van, Hendriksc M., Cahalanc, P.T., and Feijena, J. Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials. 20:921-931,1999.
Zhang, X.C., and Goosen, M.F.A. In polymeric Materials Encyclopedia, New York, CRC Press:593-598,1996.
Zhang, X.C., Wyss, U.P., Pichora, D., and Gossen, M.F.A. Polymer Bulletin. 27: 623-629,1992.
江秀玲.,等.”可吸收性牙周再生膜”., 牙醫學雜誌, 15:136,1995.
林德楊.”聚乳酸與褐藻酸微粒的製備及其應用於骨碎補的制放”國立陽明大學醫學工程研究所,碩士論文,2001.
袁國.,等.”引導組織再生的可吸收膜:最新文獻探討”., 牙醫學雜誌. 16:115,1996.
張文忠.”以PVA-AA/HEMA水膠為基材之眼內持續釋放Ganciclovir的裝置研發” 國立陽明大學醫學工程研究所,碩士論文,1998.
張淑真.”以1-苯基肉桂亞烯基乙酸應用於poly(HEMA)水膠及Alginate -poly(L-lysine)微膠囊的研究” 國立陽明大學醫學工程研究所,博士論文,1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top