跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 11:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱婉兒
研究生(外文):Wan-O Chu
論文名稱:全人工髖關節超高分子量聚乙烯髖臼杯元件取出物之磨耗分析
論文名稱(外文):The Analysis of UHMWPE Insert Wear inTotal Hip Replacement
指導教授:鄭誠功鄭誠功引用關係蘇榮源
指導教授(外文):Cheng-Kung ChengJung-Yuan Su
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:102
中文關鍵詞:超高分子量聚乙烯髖臼杯元件全人工髖關節磨耗評分
外文關鍵詞:UHMWPE inserttotal hip replacementwear score
相關次數:
  • 被引用被引用:1
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究的目的是對全人工髖關節超高分子量聚乙烯髖臼杯元件取出物(以下簡稱PE內襯元件)之磨耗進行相關性的評估,以磨耗計分的方式量化PE內襯元件表面的磨耗情形。研究材料取自1993年至2003年間在馬偕紀念醫院接受全人工髖關節再置換手術病患之人工髖關節元件取出物,由於取出物中以DePuy公司AML® Plus系列、Mecron公司Mecring系列 與 Osteonics公司OmnifIt系列等三種人工髖關節屬不同的設計,故本研究針對此三種人工髖關節的取出物進行磨耗分析。研究中定義磨耗評分=程度因數×表現數值,其中程度因數以磨耗型態來決定,而表現數值以磨耗面積決定。磨耗型態分成八種,依程度共分七級,包括磨、擦痕、變形、刮痕、坑洞、層狀剝落、磨穿和破裂。磨耗面積依磨耗面積百分比表示共分三級。利用立體光學顯微鏡得知其磨耗型態及面積,並求出磨耗評分。最後分析磨耗分數與人工髖關節元件設計之間的差異。本研究PE內襯元件的主要磨耗型態為磨:33﹪、擦痕:100﹪、刮痕:36﹪、磨穿及破裂:40﹪。統計分析顯示磨耗評分與病患之性別、患側、體重、再置換年齡、植入時間之間的相關性不顯著,但是,磨耗評分與傾斜角有顯著相關性。結果顯示:臨床變異因子對磨耗評分影響較小而不同人工髖關節的設計才是影響磨耗評分的主要因素之一。
[關鍵字]:超高分子量聚乙烯髖臼杯元件、全人工髖關節、
磨耗評分
Abstract
This study analyzed the UHMWPE insert wear in total hip replacement of different prosthesis designs and wear conditions. A grading system was developed to quantify surface wear of UHMWPE insert. Specimens of acetabular cups were selected among the total hip prosthesis revisions at Mackay Memorial Hospital, Taipei, during the years from 1993 to 2003. The specimens included products of DePuy-AML® Plus series, Mecron-Mecring series and Osteonics-Omnifit series, which were of totally different designs. This study focused on differentiating the wear among these three types of products. In our study, the wear score was defined as the severity factor (determined by the wear pattern) × the amount present (determined by the worn area). The number was multiplied by a severity factor assigned to each wear pattern on a scale of 0-7. A classification system was designed which identified the following eight pattern of damage on the surface: burnishing, abrasion, deformation, scratching, pitting, delamination, wear-through and component fracture. In each region the severity of each pattern was graded on a scale of 0-3, based on the percent area of the region affected, to give a total cumulative wear score for each UHMWPE insert. We inspected the UHMWPE insert with light stereomicroscopy to measure worn area and to classify the wear pattern. The wear scores thus calculated were analyzed to demonstrate the difference in wear related to designs of components in the types of hip prostheses. The most common types of wear observed, abrasion(100﹪), wear-through, component fracture(40﹪), scratching(36﹪)and burnishing(33﹪). Multiple linear regression analysis was used to determine possible associations between wear score and the patient's gender, age and weight at the time of the operation, the duration that the implant had been in situ. It was found no relationship between any clinical variable and the visually evaluated wear score. There was a significant positive correlation between the wear score and the angle of the inclination of the cup. This may indicate that clinical variables have little influence on polyethylene wear of well functioning hip replacements. Alternatively, it may be related to the variety of cup designs included in our study .
[Keyword]: UHMWPE insert, total hip replacement, wear score
參考文獻
1. Amstutz HC, Campbell P, Kossvsky N, and Clarke IC. Mechanism and clinical significance of wear debris-induced osteolysis. Clin. Orthop. 1991;276:7-18.
2. Bartel DL, Bicknell VL, and Wrigh TM. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacements. J. Bone Join Surg.[Br] 1986;68A:1041-1051.
3. Blunn GW, Joshi AB, Minns RJ, Lidgren L, Lilley P, Ryd L, Engelbrecht E, and Walker PS. Wear in retrieved condylar knee arthroplasties:A comparison of wear in different designs of 280 retrieved condylar knee prostheses. J. Arthroplasty. 1997;12(3):281-290.
4. Bono JV, Sanford L, and Toussaint JT. Severe polyethylene wear in total hip arthroplasty:Observations from retrieved AML PLUS hip implants with an ACS polyethylene liner. J. Arthroplasty. 1994;9(2):119-125.
5. Brand RA, Pedersen DR, Davy DW, Kotzar GM, Heiple KG and Goldberg VM. Comparison of hip force calculations and measurements in the same patient. J. Arthroplasty. 1994;9:45-51.
6. Brien WW. Salvati EA, and Wright TM. Dissociation of acerabular components after total hip athreplasty. J. Bone Joint Surg.[Am] 1990;72:1548-1550.
7. Budinski KG.Surface engineering for wear resistance. New Jersey, Published by Noonan M;1988.
8. Cheng WH. The Stress Distribution of UHMWPE Acetabular Cup in Total Hip Replacement:By finite element method and clinical observation. Master Thesis, Chang Gung University, Taiwan, 2004.
9. Clarke IC, Gustafson A, Jung H, and Fujisawa A. Hip simulator ranking of polyethylene wear. Acta. Orthop Scand;1996;67: 128-132.
10. Collier JP, Maor MB, and McNamara JL. Analysis of the failure of 122 polyethylene inserts from uncemented tibial knee components. Clin. Orthop. 1991;273:232-240.
11. Cournoyer JR., Ochoa JA, and Kurtz S. Relative motion at the backside of a metal-backed acetabular component under quasistatic and dynamic loading. Trans. 43rd Orthop. Res. Soc. 1997;839.
12. Davidson JA. Characteristics of metal and ceramic total hip bearing surfaces and their effect on long-term ultra high molecular weight polyethylene wear. Clin. Orthop. 1993;294:361-378.
13. Devane PA, and Horne JG. Assessment of polyethylene wear in total hip replacement. Clin. Orthop. 1999;369:59-72.
14. Duda GN, Schneider E, and Chao YS. Internal forces and moments in the femur during walking. J Biomechanics 1997;30(9): 933-941.
15. Fritsch EW, and Gleitz M. Ceramic femoral head fractures in total hip arthroplasty. Clin. Orthop. 1996;328:129-136.
16. Griss P, Silber R, Menkle B, and Haechner K. Biomechanically induced tissue reaction after A1203-ceramic hip joint replacement. Experimental and clinical results. J. Biomed. Mater Res. 1976;7:519-528.
17. Gunther SB, Graham J,Norris T, Ries M, and Pruitt LA. A quantitative evaluation of surface damage in retrieved total shoulder prothesis.,47th Annual Meeting, Orthopaedic Research Society 2001;25-28.
18. Higuchi F, Shiba N, Inoue A, and Wakebe. I. Fracture of an alumina ceramic head in total hip arthroplasty. J. Arthroplasty 1995;10:851-854.
19. Hood RW, Wright TW, and Burstein AH. Retrieval analysis of total knee prostheses:A method and its application to 48 total condylar protheses. J. Biomed. Master Res. 1983;17:829-842.
20. Jansson V and Refior HJ. Mechanical failure of the femoral component in cement total hip replacement: A finite element evaluation. Arch. Orthop. Trauma Surg. 1993;113:23-27.
21. Kadoya Y, Kobayashi A, Ohashi H, Yamano Y, Iwaki H, Scott G, and Michael A.R. Wear and osteolysis in total joint replacements: Mechanism, pathway and it's prevention. American Academy of Orthopaedic Surgeons New Orleans 1998:65.
22. Kavanagh BF, Wallrich S, Dewitz M, Berry D, Currier B, Ilstrup D, and Conventry MB. Charnley low-friction arthroplasty of the hip. J. Arthroplasty 1994;9:229-234.
23. Kim YH and Kim VM. Cementless porous-coated anatomic medullary locking total hip prostheses. J. Arthroplasty 1994;9:243-252.
24. Kitziger KJ,. DeLee JC, and Evans J. Disassembly of a modular acetabular component of a total hip-replacement arthroplasty. J. Bone Joint Surg.[Am] 1990;72: 624-625.
25. Klimkiewicz JJ, and Ianotti JP. Aseptic loosening of the humeral component in total shoulder arthroplasty. J Shoulder Elbow Surg. 1998;7:422-430.
26. Krikler S, and Schatzker J. Ceramic head fracture. J. Arthroplasty 1995;10:860-862.
27. Kurtz SM, Gabriel SM, and Bartel DL. The effect of non-conformity between metal-backed and polyethylene inserts in acetabular components for total hip arthroplasty. Trans. 39th Orthop. Res. Soc. 1993;434.
28. Lee PC, Shih CH, Yen WL, Yang WE, Tu YK, Tai CL. Complications of liner locking system in MicroStructured Omnifit acetabular components: A radiographic evaluation of 887 hips followed for 5-10 years. Acta Orthop. Scand. 2000;71:31-33
29. Linde F, and Jensen J. Socket lossining in arthtoplasty for congenital dislocation of the hip. Acta. Orthop. Scand. 1988;59:254-257.
30. Livermore J. Ilstrup D, and Morrey B. Effect of femoral head size on wear of the polyethylene acetabular component. J. Bone Join Surg.[Am] 1990;72(4):518-528.
31. McElfresh E. History of Arthroplasty. Total Joint Replacement. Published by Saunders WB Company 1991;3-18.
32. McKellop H, Shen FW,and Lu B. Development of an extremely wear resistance UHMWPE for total hip replacements. J. Orthop. Res. 1999;17:157.
33. Mohler CG, Callaghan JJ, Collis DK, and Johnston RC. Early loosening of the femoral component at the cement-prosthesis interface after total hip replacement. J. Bone Joint Surg. 1995;77A: 1315-1322.
34. ovrt.nist.gov/projects/ vrml/h-anim/hip.gif
35. Paul JP. Forces transmitted by joints in the human body. Proc. Instn. Mech. Engrs. 1967;181(3J):8-13.
36. Pederson DR, Brand RA, and Davy DT. Pelvic muscle and acetabular contact forces during gait. J. Biomechanics 1997;30(9):959-965.
37. Pulliam IT, and Trousdale RT. Fracture of a ceramic femoral head after a revision operation. J. Bone Joint Surg 1997;79A:118-121.
38. Rottger J, and Elson R. A modification of Charnley low-friction arthroplasty: representative ten-year follow-up results of the St. George prosthesis. Clin. Orthop. 1986;211:154-163.
39. Saikko VO, Paavolainen PO, and Slätis P. Wear of the polyethylene acetabular cup: metallic and ceramic heads compared in a hip simulator. Acta. Orthop. Scand. 1993(b);64:391-402.
40. Saikko VO. Wear of polyethylene acetabular cups against alumina femoral heads. Acta Orthop. Scand 1993(a); 64: 507-512 .
41. Schmalzried T, Jasy M, and Harris WH. Periprosthetic bone loss in total hip arthroplasty:Polyethylene wear debris and the concept of the effective joint space. J. Bone Join. Surg.[Am1 992;74:849.
42. Schmalzried TP, Campell P, Brown IC, Schmitt AK, and Amstutz HC. Polyethylene wear particles generated in-vivo by total knee replacements compared to total hip replacements. Trans.41th Orthop Res Soc 1995;163-228,
43. Sequeira MM, Rickenbach M, Wietlisbach V, Tullen B and Schutz Y. Physical activity assessment using a pedometer and its comparison with a questionnaire in a large population survey. Am. J. Epidemiol 1995;142(9):989-999.
44. Skurla CT, James SP and Pluhar GE.Long-term wear damage analysis of 38 postmortem retrieved canine total hip replacements. 49th Annual Meeting, Orthopaedic Research Society. 2003:2,
45. Skurla CT,and James.SP. Postmortem retrieved analysis of canine total hip arthroplasty. Dissertation ,Colorado State University, 2002.
46. Stephen B, Gunther SB, Graham J, Tom R. Norris. Retrieved glenoid components:A classification system for surface damage analysis. J. Arthroplasty 2002;17:95-100.
47. Suthrtland CJ, Wilde AH, Borden LS, and Marks KE. A ten-year follow-up of one hundred consecutive Muller Curved-stem total hip replacement arthro-plasties. J Bone Joint Surg.[Am] 1982;64A:970-982.
48. Sychterz CJ, Moon KH, and Hashmoto Y. Wear of Polyethylene Cups in Total Hip Arthroplasty. A study of specimens retrieved post mortem. J. Bone Joint Surg. 1996;78:1193-1200
49. Tanner MG, Whiteside LA, and White SE. Effect of polyethylene quality on wear in total knee arthroplasty. Clin. Orthop. 1995;317:83-88.
50. Volkmann R., Schneider MA., Bretschneider C., and Weise K. More failures of uncemented acetabular screw-rings than of cemented polyethylene cups in total hip arthroplasties. International Orthopaedics 1999;23(3):138-139.
51. Wixson RL, Stulberg SD, and Mehlhoff M. Total Hip replacement with cemented, uncemented, and hybrid prostheses: A comparison of clinical and radiographic results at two to four years.J. Bone Joint Surg. 1991;73A:257-270.
52. Wright TM and Bartel DL. The problem of surface damage in polyethylene total knee components. Clinical Orthopaedics & Related Research. 1986;205:67-74.
53. Wu CS. Finite element stress analysis of polyethylene inserts in acetabular components for total hip arthroplasty. Master Thesis of Institute of Biomedical Engineering, Chung Yuan Christion University, Taiwan, 1997.
54. Yang YR. Retrieval analysis of total knee prostheses:Wear conditions of patellar components. Master Thesis of Institute of Biomedical Engineering, Yang-Ming Uni
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top