跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯品豪
研究生(外文):Pin-Hao Ko
論文名稱:迪皮質醇抑制二-甲氧基氫偶素及乳酸在肝癌細胞所引發的細胞凋亡機轉探討
論文名稱(外文):Dexamethasone Inhibits 2-Methoxyestradiol- or Lactic Acid- Induced Apoptosis of Hepatoma Cells
指導教授:戚謹文
指導教授(外文):Chin-Wen Chi
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:迪皮質醇二-甲氧基氫偶素乳酸肝癌細胞凋亡
外文關鍵詞:Dexamethasone2-Methoxyestradiol乳酸HepatomaApoptosis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
依據行政院衛生署資料統計民國九十一年度台灣地區惡性腫瘤位居十大死因首位,而肝癌於惡性腫瘤中的排名在男、女性中分列一、二位,但對於肝癌由發生時的少量癌細胞如何持續生長終至形成腫瘤的詳細原因,目前仍未完全明瞭。
肝癌形成的原因可能是因為癌細胞本身由基因到蛋白質的表現已有部分異於正常細胞,因此能夠不受正常生理調控而持續生長所致。依據研究室過去的資料顯示在肝癌患者的肝臟組織中,肝癌細胞的糖皮質類固醇受體含量較周圍的肝臟組織多。其他研究中則顯示肝癌在女性的預後較男性為佳。因此可推斷如動情激素、糖皮質類固醇等的類固醇荷爾蒙在肝癌的生長發育過程中扮演一定的角色。
二甲氧基氫偶素是人體動情激素代謝後的其中一種產物,並可有效抑制肝癌及其他多種癌症細胞的生長;乳酸則是細胞進行糖解作用後的代謝產物,在細胞培養液中乳酸的累積可視為一種環境的壓力;而迪皮質醇則是非內生性的人工合成糖皮質類固醇類藥物。本篇研究的目的即在於探討肝癌細胞中類固醇和二甲氧基氫偶素及乳酸等引發細胞凋亡藥物間的交互關聯為何。
在Hepa 1-6及HepG2兩株肝癌細胞所建立的體外模式中,以2.5~10 μM的二甲氧基氫偶素或25 mM的高濃度乳酸均可對細胞產生生長抑制及降低存活率的作用。但是細胞在經過1 μM的迪皮質醇預處理24小時後再給予二甲氧基氫偶素及乳酸,則可以發現其細胞存活率分別上升20% 或70%,因此可得知迪皮質醇對二甲氧基氫偶素或乳酸所造成的細胞傷害有部分保護作用。另一方面,由細胞週期、annexin V訊號、DNA ladder、ethidium bromide或HE染色等數據判斷,二甲氧基氫偶素或乳酸亦會使細胞產生凋亡;迪皮質醇則可部份降低這些細胞凋亡訊號的產生。而在caspase或Bcl等和細胞凋亡相關的蛋白質方面,肝癌細胞處理二甲氧基氫偶素或乳酸後caspase-8、-9、-3的含量均有增加;迪皮質醇則可部份抑制這些蛋白質的表現。而Bcl-2和Bcl-xL在迪皮質醇處理後其蛋白質含量相較於單獨給予二甲氧基氫偶素或乳酸的組別為高。
綜合以上結果,可推測糖皮質類固醇類藥物可藉由影響細胞凋亡路徑而達到調控肝癌細胞生長的作用。
According to the department of health vital statistics, hepatoma is the leading cause of malignant tumors in Taiwan for many years. However, the detailed mechanism of the growth of hepatoma cells remains unknown.
The causes of hepatoma probably result from some genetic changes occurred in hepatoma cells, which enable hepatoma cells to escape physiological regulation. Previously, our laboratory has found that the level of glucocorticoid receptors in hepatoma tissues was significantly higher than adjacent liver tissues. Moreover, it has been reported that female patients have better survival rate than males after radical resection of hepatocellular carcinoma. Therefore, it is reasonable to assume that steroid hormones such as estrogen and glucocorticoids are involved in the regulation of growth and development of hepatoma.
2-Methoxyestradiol (2-ME) is one of the metabolites of estrogen. 2-ME is an effective growth inhibitor for many kinds of cancer cells, including hepatoma cells. Lactic acid (LA) is an endogenous metabolite of glycolysis. Increased concentration of LA secreated by cultured cells can be considered as an environmental stress. Dexamethasone (Dex) is an ersatz glucocorticoid drug. The objective of this study is to examine the interaction between glucocorticoid and endogenous apoptosis inducers such as 2-ME and LA in hepatoma cells.
Two hepatoma cell lines Hepa 1-6 and HepG2 were used in this study. Treatment of hepatoma cells with 2.5~10 μM 2-ME or 25 mM LA resulted in growth inhibition and decreased viability. When cells were treated with 2-ME or LA in the presence of dexamethasone it was found that Dex partially blocked the 2-ME or LA induced growth inhibition and inceased viabiliy for 20% or 70%, respectively. In addition, according to the results of cell cycle analysis, annexin V binding assay, DNA ladder formation, ethidium bromide stain and HE stain, 2-ME or LA also induced apoptosis of hepatoma cells. Combined treatment with Dex partially reduced the 2ME or LA induced apoptosis signal. In order to further understand the mechanism, apoptosis-related proteins such as caspases or Bcl family proteins were also examined. Treatment of hepatoma cells with 2-ME or LA resulted in up-regulation of caspase- 8, -9 and -3. Dex partially suppressed the caspases expression. The Bcl-2 level was induced by Dex treatment but decreased after treatment with 2-ME or LA.
These results together suggest that glucocorticoids may regulate hepatoma growth via anti-apoptotic pathways.
Adams, J. M. and Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science, 281: 1322-1326, 1998.
Attalla, H., Knuutila, S., Makela, T. P., Andersson, L. C., and Adlercreutz, H. Cytogenetic chromosomal preparations using 2-methoxyestradiol. Cancer Genet Cytogenet, 102: 139-141, 1998.
Attalla, H., Makela, T. P., Adlercreutz, H., and Andersson, L. C. 2-Methoxyestradiol arrests cells in mitosis without depolymerizing tubulin. Biochem Biophys Res Commun, 228: 467-473, 1996.
Attalla, H., Westberg, J. A., Andersson, L. C., Adlercreutz, H., and Makela, T. P. 2-Methoxyestradiol-induced phosphorylation of Bcl-2: uncoupling from JNK/SAPK activation. Biochem Biophys Res Commun, 247: 616-619, 1998.
Bailly-Maitre, B., de Sousa, G., Boulukos, K., Gugenheim, J., and Rahmani, R. Dexamethasone inhibits spontaneous apoptosis in primary cultures of human and rat hepatocytes via Bcl-2 and Bcl-xL induction. Cell Death Differ, 8: 279-288, 2001.
Basu, A. and Haldar, S. Identification of a novel Bcl-xL phosphorylation site regulating the sensitivity of taxol- or 2-methoxyestradiol-induced apoptosis. FEBS Lett, 538: 41-47, 2003.
Beasley, R. P., Hwang, L. Y., Lin, C. C., and Chien, C. S. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet, 2: 1129-1133, 1981.
Bergstrand, C. G. Alphafetoprotein in paediatrics. Acta Paediatr Scand, 75: 1-9, 1986.
Bolla, M., Gonzalez, D., Warde, P., Dubois, J. B., Mirimanoff, R. O., Storme, G., Bernier, J., Kuten, A., Sternberg, C., Gil, T., Collette, L., and Pierart, M. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Engl J Med, 337: 295-300, 1997.
Boobis, A. R., Fawthrop, D. J., and Davies, D. S. Mechanisms of cell death. Trends Pharmacol Sci, 10: 275-280, 1989.
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 248-254, 1976
Bruix, J., Barrera, J. M., Calvet, X., Ercilla, G., Costa, J., Sanchez-Tapias, J. M., Ventura, M., Vall, M., Bruguera, M., and Bru, C. Prevalence of antibodies to hepatitis C virus in Spanish patients with hepatocellular carcinoma and hepatic cirrhosis. Lancet, 2: 1004-1006, 1989.
Buckley, C. D., Pilling, D., Henriquez, N. V., Parsonage, G., Threlfall, K., Scheel-Toellner, D., Simmons, D. L., Akbar, A. N., Lord, J. M., and Salmon, M. RGD peptides induce apoptosis by direct caspase-3 activation. Nature, 397: 534-539, 1999.
Bu, S., Blaukat, A., Fu, X., Heldin, N. E., and Landstrom, M. Mechanisms for 2-methoxyestradiol-induced apoptosis of prostate cancer cells. FEBS Lett, 531: 141-151, 2002.
Cleveland, J. L. and Kastan, M. B. Cancer. A radical approach to treatment. Nature, 407: 309-311, 2000.
Corcoran, G. B., Fix, L., Jones, D. P., Moslen, M. T., Nicotera, P., Oberhammer, F. A., and Buttyan, R. Apoptosis: molecular control point in toxicity. Toxicol Appl Pharmacol, 128: 169-181, 1994.
Cory, A. H., Owen, T. C., Barltrop, J. A., and Cory, J. G. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun, 3: 207-212, 1991.
Cossarizza, A., Baccarani-Contri, M., Kalashnikova, G., and Franceschi, C. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5'',6,6''-tetrachloro-1,1'',3,3''-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun, 197: 40-45, 1993.
Cushman, M., He, H. M., Katzenellenbogen, J. A., Lin, C. M., and Hamel, E. Synthesis, antitubulin and antimitotic activity, and cytotoxicity of analogs of 2-methoxyestradiol, an endogenous mammalian metabolite of estradiol that inhibits tubulin polymerization by binding to the colchicine binding site. J Med Chem, 38: 2041-2049, 1995.
Darlington, G. J., Bernhard, H. P., Miller, R. A., and Ruddle, F. H. Expression of liver phenotypes in cultured mouse hepatoma cells. J Natl Cancer Inst, 64: 809-819, 1980.
Day, J. M., Newman, S. P., Comninos, A., Solomon, C., Purohit, A., Leese, M. P., Potter, B. V., and Reed, M. J. The effects of 2-substituted oestrogen sulphamates on the growth of prostate and ovarian cancer cells. J Steroid Biochem Mol Biol, 84: 317-325, 2003.
Desagher, S. and Martinou, J. C. Mitochondria as the central control point of apoptosis. Trends Cell Biol, 10: 369-377, 2000.
Di Bisceglie, A. M. Hepatitis C and hepatocellular carcinoma. Hepatology, 26: 34S-38S, 1997.
Duclos, M., Gouarne, C., Martin, C., Rocher, C., Mormede, P., and Letellier, T. Effects of corticosterone on muscle mitochondria identifying different sensitivity to glucocorticoids in Lewis and Fischer rats. Am J Physiol Endocrinol Metab, 286: E159-167, 2004.
Evans-Storms, R. B. and Cidlowski, J. A. Delineation of an antiapoptotic action of glucocorticoids in hepatoma cells: the role of nuclear factor-kappaB. Endocrinology, 141: 1854-1862, 2000.
Faleiro, L. and Lazebnik, Y. Caspases disrupt the nuclear-cytoplasmic barrier. J Cell Biol, 151: 951-959, 2000.
Falkson, G., Cnaan, A., Schutt, A. J., Ryan, L. M., and Falkson, H. C. Prognostic factors for survival in hepatocellular carcinoma. Cancer Res, 48: 7314-7318, 1988.
Fawthrop, D. J., Boobis, A. R., and Davies, D. S. Mechanisms of cell death. Arch Toxicol, 65: 437-444, 1991.
Fotsis, T., Zhang, Y., Pepper, M. S., Adlercreutz, H., Montesano, R., Nawroth, P. P., and Schweigerer, L. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature, 368: 237-239, 1994.
Green, D. R. and Reed, J. C. Mitochondria and apoptosis. Science, 281: 1309-1312, 1998.
Gullino, P. M., Clark, S. H., and Grantham, F. H. The Interstitial Fluid of Solid Tumors. Cancer Res, 24: 780-794, 1964.
Health and Vital Statistics. Taiwan Area, R.O.C. 2002
Hengartner, M. O. The biochemistry of apoptosis. Nature, 407: 770-776, 2000.
Herrlich, P. Cross-talk between glucocorticoid receptor and AP-1. Oncogene, 20: 2465-2475, 2001.
Hetts, S. W. To die or not to die: an overview of apoptosis and its role in disease. JAMA, 279: 300-307, 1998.
Hirpara, J. L., Clement, M. V., and Pervaiz, S. Intracellular acidification triggered by mitochondrial-derived hydrogen peroxide is an effector mechanism for drug-induced apoptosis in tumor cells. J Biol Chem, 276: 514-521, 2001.
Huang, P., Feng, L., Oldham, E. A., Keating, M. J., and Plunkett, W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature, 407: 390-395, 2000.
Jeong, D., Kim, T. S., Lee, J. W., Kim, K. T., Kim, H. J., Kim, I. H., and Kim, I. Y. Blocking of acidosis-mediated apoptosis by a reduction of lactate dehydrogenase activity through antisense mRNA expression. Biochem Biophys Res Commun, 289: 1141-1149, 2001.
Johnson, L. V., Walsh, M. L., and Chen, L. B. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A, 77: 990-994, 1980.
Johnson, P. J. Role of alpha-fetoprotein in the diagnosis and management of hepatocellular carcinoma. J Gastroenterol Hepatol, 14 Suppl: S32-36, 1999.
Johnston, S. R. Endocrine manipulation in advanced breast cancer: recent advances with SERM therapies. Clin Cancer Res, 7: 4376s-4387s; discussion 4411s-4412s, 2001.
Kachadourian, R., Liochev, S. I., Cabelli, D. E., Patel, M. N., Fridovich, I., and Day, B. J. 2-Methoxyestradiol does not inhibit superoxide dismutase. Arch Biochem Biophys, 392: 349-353, 2001.
Kallinowski, F., Tyler, G., Mueller-Klieser, W., and Vaupel, P. Growth-related changes of oxygen consumption rates of tumor cells grown in vitro and in vivo. J Cell Physiol, 138: 183-191, 1989.
Kamradt, M. C., Mohideen, N., Krueger, E., Walter, S., and Vaughan, A. T. Inhibition of radiation-induced apoptosis by dexamethasone in cervical carcinoma cell lines depends upon increased HPV E6/E7. Br J Cancer, 82: 1709-1716, 2000.
Keiding, R. Recommended methods for the determination of four enzymes in blood. Scand J Clin Lab Invest, 33: 291-306, 1974.
Kerr, J. F. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol, 90: 419-435, 1965.
Kerr, J. F., Wyllie, A. H., and Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26: 239-257, 1972.
Knowles, B. B., Howe, C. C., and Aden, D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science, 209: 497-499, 1980.
Kofler, R. The molecular basis of glucocorticoid-induced apoptosis of lymphoblastic leukemia cells. Histochem Cell Biol, 114: 1-7, 2000.
Lai, E. C., Choi, T. K., Tong, S. W., Ong, G. B., and Wong, J. Treatment of unresectable hepatocellular carcinoma: results of a randomized controlled trial. World J Surg, 10: 501-509, 1986.
LaVallee, T. M., Zhan, X. H., Herbstritt, C. J., Kough, E. C., Green, S. J., and Pribluda, V. S. 2-Methoxyestradiol inhibits proliferation and induces apoptosis independently of estrogen receptors alpha and beta. Cancer Res, 62: 3691-3697, 2002.
LaVallee, T. M., Zhan, X. H., Johnson, M. S., Herbstritt, C. J., Swartz, G., Williams, M. S., Hembrough, W. A., Green, S. J., and Pribluda, V. S. 2-methoxyestradiol up-regulates death receptor 5 and induces apoptosis through activation of the extrinsic pathway. Cancer Res, 63: 468-475, 2003.
Lui, W. Y., Chi, C. W., Chang, Y. F., Chu, H. W., Hsieh, C. C., Yin, P. H., Liu, T. Y., Ou, Y. R., and P''Eng F, K. In vivo and in vitro growth stimulation of murine hepatoma cells by glucocorticoid. Anticancer Res, 22: 1413-1422, 2002.
Majno, G. and Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol, 146: 3-15, 1995.
Martins, L. M., Mesner, P. W., Kottke, T. J., Basi, G. S., Sinha, S., Tung, J. S., Svingen, P. A., Madden, B. J., Takahashi, A., McCormick, D. J., Earnshaw, W. C., and Kaufmann, S. H. Comparison of caspase activation and subcellular localization in HL-60 and K562 cells undergoing etoposide-induced apoptosis. Blood, 90: 4283-4296, 1997
Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y., and Reed, J. C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol, 2: 318-325, 2000
Mikosz, C. A., Brickley, D. R., Sharkey, M. S., Moran, T. W., and Conzen, S. D. Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J Biol Chem, 276: 16649-16654, 2001.
Mueller-Klieser, W., Walenta, S., Paschen, W., Kallinowski, F., and Vaupel, P. Metabolic imaging in microregions of tumors and normal tissues with bioluminescence and photon counting. J Natl Cancer Inst, 80: 842-848, 1988.
Mukhopadhyay, T. and Roth, J. A. Induction of apoptosis in human lung cancer cells after wild-type p53 activation by methoxyestradiol. Oncogene, 14: 379-384, 1997.
Nagasue, N., Galizia, G., Yukaya, H., Kohno, H., Chang, Y. C., Hayashi, T., and Nakamura, T. Better survival in women than in men after radical resection of hepatocellular carcinoma. Hepatogastroenterology, 36: 379-383, 1989.
Oberhammer, F., Wilson, J. W., Dive, C., Morris, I. D., Hickman, J. A., Wakeling, A. E., Walker, P. R., and Sikorska, M. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J, 12: 3679-3684, 1993.
Ohnishi, K., Yoshioka, H., Ito, S., and Fujiwara, K. Prospective randomized controlled trial comparing percutaneous acetic acid injection and percutaneous ethanol injection for small hepatocellular carcinoma. Hepatology, 27: 67-72, 1998.
Okada, S. Chemotherapy in hepatocellular carcinoma. Hepatogastroenterology, 45 Suppl 3: 1259-1263, 1998.
Okuda, K. Hepatocellular carcinoma: recent progress. Hepatology, 15: 948-963, 1992.
Olive, P. L., Frazer, G., and Banath, J. P. Radiation-induced apoptosis measured in TK6 human B lymphoblast cells using the comet assay. Radiat Res, 136: 130-136, 1993.
Pignata, S., Daniele, B., Gallo, C., De Vivo, R., Monfardini, S., and Perrone, F. Endocrine treatment of hepatocellular carcinoma. Any evidence of benefit? Eur J Cancer, 34: 25-32, 1998.
Pitot, H. C. Fundamentals of Oncology. 3rd ed. New York, Marcel Dekker, p139. 1986.
Planey, S. L. and Litwack, G. Glucocorticoid-induced apoptosis in lymphocytes. Biochem Biophys Res Commun, 279: 307-312, 2000.
Qanungo, S., Basu, A., Das, M., and Haldar, S. 2-Methoxyestradiol induces mitochondria dependent apoptotic signaling in pancreatic cancer cells. Oncogene, 21: 4149-4157, 2002.
Seegers, J. C., Aveling, M. L., Van Aswegen, C. H., Cross, M., Koch, F., and Joubert, W. S. The cytotoxic effects of estradiol-17 beta, catecholestradiols and methoxyestradiols on dividing MCF-7 and HeLa cells. J Steroid Biochem, 32: 797-809, 1989.
Shikata T. Hepatocellular carcinoma. New York, John Wiley & Sons. p53, 1976
Slaga, T. J. Mechanisms of Tumor-Promotion. In: Tumor Promotion in Internal Organs. CRC Press, Boca Raton. 1983.
Swenson, D. H., Miller, E. C., and Miller, J. A. Aflatoxin B1-2,3-oxide: evidence for its formation in rat liver in vivo and by human liver microsomes in vitro. Biochem Biophys Res Commun, 60: 1036-1043, 1974.
Tannock, I. F. and Hill, R. P. Tumor growth and cell kinetics. In: The Basic Science of Oncology. Pergamon Press, New York, p140. 1987.
Vaupel, P., Kallinowski, F., and Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res, 49: 6449-6465, 1989.
Wang, J. and Lenardo, M. J. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J Cell Sci, 113 ( Pt 5): 753-757, 2000.
Warr, D. Standard treatment of chemotherapy-induced emesis. Support Care Cancer, 5: 12-16, 1997.
Williams, A. C., Collard, T. J., and Paraskeva, C. An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene, 18: 3199-3204, 1999
Winer, E. P., Hudis, C., Burstein, H. J., Chlebowski, R. T., Ingle, J. N., Edge, S. B., Mamounas, E. P., Gralow, J., Goldstein, L. J., Pritchard, K. I., Braun, S., Cobleigh, M. A., Langer, A. S., Perotti, J., Powles, T. J., Whelan, T. J., and Browman, G. P. American Society of Clinical Oncology technology assessment on the use of aromatase inhibitors as adjuvant therapy for women with hormone receptor-positive breast cancer: status report 2002. J Clin Oncol, 20: 3317-3327, 2002.
Yamagata, M., Hasuda, K., Stamato, T., and Tannock, I. F. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer, 77: 1726-1731, 1998.
Yeh, F. S., Yu, M. C., Mo, C. C., Luo, S., Tong, M. J., and Henderson, B. E. Hepatitis B virus, aflatoxins, and hepatocellular carcinoma in southern Guangxi, China. Cancer Res, 49: 2506-2509, 1989.
Zhu, B. T. and Conney, A. H. Is 2-methoxyestradiol an endogenous estrogen metabolite that inhibits mammary carcinogenesis? Cancer Res, 58: 2269-2277, 1998.
Zoubine, M. N., Weston, A. P., Johnson, D. C., Campbell, D. R., and Banerjee, S. K. 2-Methoxyestradiol-induced growth suppression and lethality in estrogen-responsive MCF-7 cells may be mediated by down regulation of p34cdc2 and cyclin B1 expression. Int J Oncol, 15: 639-646, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 硼中子捕獲治療合併二甲氧基氫偶素於小鼠肝腫瘤之效果
2. 樟芝菌絲體活化巨噬細胞誘發人類肝癌細胞凋亡之分子機制探討
3. 以細胞培養模式評估固態培養牛樟芝菌絲體萃取物之抗肝癌生物活性及其機制
4. 第一篇:Baicalein引發人類肝癌細胞計畫性死亡作用機轉的研究第二篇:Shikonin引發人類肝癌細胞計畫性死亡作用機轉的研究
5. 黃芩素誘導人類肝癌細胞(J5)細胞凋亡及抑制細胞轉移之分子機轉
6. 利用Hep3B肝癌細胞株探討桑黃與綠豆篁之抗癌功效。第一部份:誘導細胞凋亡之功能評估;第二部份:抗血管新生功能評估。
7. 深層發酵樟芝菌絲體乙醇萃取物對人類肺癌及肝癌細胞生長之影響與其作用機轉之探討
8. Actinodaphnine誘導細胞內nitricoxide、reactiveoxygenspecies及降低NF-kB活性導致人類肝癌Mahlavu細胞株計畫性死亡的研究
9. 臺灣產番荔枝科乙醯生合成物與其抗癌作用機轉之探討
10. 靈芝抗癌成份引發肝癌細胞株凋亡之分子機制研究
11. 第一部份黃芩成分對人類肝癌細胞株之影響及其作用機制探討第二部份大豆乳酸菌發酵液抗乳癌功效評估及其作用機制探討
12. 利用肝癌細胞株HepG2來探討黑豆與Aspergillusawamori發酵之黑豆麴經不同溶劑萃取之粗萃物其抗癌功能之研究
13. 臺灣蜂膠衍生物誘導人類肝癌細胞凋亡機制探討
14. 薑黃精油透過活性氧分子的產生導致人類肝癌細胞HepG2細胞凋亡
15. 香茹萃取物對肝癌細胞之毒殺效果與其作用機轉
 
無相關期刊