跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧祥伶
研究生(外文):Hsian-ling Teng
論文名稱:髕股疼痛症候群之臨床及肌電圖特性
論文名稱(外文):Clinical and Electromyographic Characteristics of Patellofemoral Pain Syndrome
指導教授:陳文英陳文英引用關係王子娟王子娟引用關係
指導教授(外文):Wen-Yin ChenWendy TZ Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
中文關鍵詞:髕股疼痛症候群肌電圖肌肉疲乏速率臨床測試
外文關鍵詞:patellofemoral pain syndromeelectromyographymuscle fatigue rateclinical measurement
相關次數:
  • 被引用被引用:2
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
摘要
背景與目的:髕股疼痛症候群是臨床上常見、且好發於年輕愛好運動族群的問題。髕骨滑軌異常被認為是造成此症候群的主要原因。曾有學者提出股內斜肌相對於股外肌在肌肉疲乏速率上的差異,是造成髕骨滑軌異常,進而引起髕股疼痛症候群的因素之一。之前的研究使用肌電圖中間頻率斜率(median frequency slope)來探討此兩條肌肉在疲乏速率上的差異,發現此類患者的股內斜肌相較於股外肌有較易疲乏的趨勢。然而此現象尚未被證實。一些在肌肉骨骼上的特性,如脛骨旋轉角度、股四頭肌Q角度、以及下肢幾條肌肉(髂腰肌、股直肌、膕旁肌、腓長肌)的柔軟度,也被認為和髕骨滑軌息息相關,且能透過臨床測量將其量化。本實驗的目的在比較有無罹患髕股疼痛症候群的人,在臨床測量上表現出肌肉骨骼特性,以及股內斜肌及股外肌在肌電圖上表現出的疲乏速率的差異。 實驗設計與方法:本研究為一橫斷式,病例-對照的實驗。共有三十二名髕股疼痛症候群患者以及三十二名年齡與性別配對的對照組受測者參與本實驗。受測者以書面同意進入本實驗後,會以臨床測量評估其脛骨扭轉角度,Q角度,髂腰肌、股直肌、膕旁肌、腓長肌的柔軟度,以及膝關節伸直的最大力量。並以表面肌電圖測試其在膝關節彎曲45度下執行單腳蹲踞六十秒的過程中,股內斜肌及股外肌的中間頻率斜率。結果以獨立t檢定(independent t-tests)來比較兩組在肌肉骨骼特性上的差異。並以二維重複變異數分析(2 x 2 repeated measures analyze of variance, ANOVA)來檢定有無罹患髕骨疼痛症候群以及兩不同肌肉(股內斜肌,股外肌)對中間頻率斜率的影響。α值設為0.01。結果:相較於對照組,髕股疼痛症候患者具有較大的脛骨扭轉角度並呈現髂腰肌、股直肌、膕旁肌、腓長肌柔軟度較差的情形,且其股內斜肌相較於股外肌也有較高的疲乏速率。討論及結論:本實驗結果支持原本所假設兩組在肌肉骨骼特性(脛骨扭轉角度及下肢肌肉柔軟度)上的差異。此外,本實驗結果也支持了髕股疼痛症候群患者其股內斜肌相較於股外肌會有較高疲乏速率的假設。本實驗提供了我們一個不同的面向來探討股內斜肌與股外肌肌肉活性上的差異,可作為臨床處理髕股疼痛症候群患者之參考。
ABSTRACT
BACKGROUND AND PURPOSE. Patellofemoral pain syndrome (PFPS) is a common disorder that prevails in young and active population. Abnormal patellar tracking is considered as the primary contributing factor of PFPS. Differential muscle fatigue rate of the vastus medialis oblique (VMO) relative to the vastus lateralis (VL) have been hypothesized as a contributing factor for lateral tracking of the patella that results in PFPS. Previous efforts suggested a trend toward higher fatigue rate of VMO than VL in PFPS as investigated with electromyographic (EMG) medial frequency (MF) slopes. However, this phenomenon has not been confirmed. Musculoskeletal characteristics such as tibial torsion, quadriceps (Q) angle, flexibility of the knee musculature, and knee extension force were also known to highly correlate with patellar tracking and could be assessed quantitatively through clinical measurements. The purposes of this study were to compare the clinical measurement of musculoskeletal characteristics and the EMG fatigue rates of VMO and VL in subjects with and without PFPS. DESIGN AND METHOD. This was a cross-sectional, case-control study. Thirty-two subjects with PFPS and 32 age and gender matched control subjects were recruited for the study. Clinical measurements were used to asses the tibial torsion, Q angle, flexibility of the hamstrings, quadriceps, and gastrocnemius, and peak knee extension force. Surface EMG was used to investigate the MF slopes of VMO and VL during a single-leg squatting at 45o of knee flexion for 60 seconds. Independent t-tests were used to determine the difference in the musculoskeletal characteristics between subjects with and without PFPS. A 2 x 2 (muscle x group) repeated measures analysis of variance (ANOVA) was used to determine whether the MF slope varied between the two muscles (VMO and VL) across the two groups (with and without PFPS). The significant level of the tests was set at 0.01. RESULTS. Significantly larger tibial torsion, tighter iliopsoas, hamstrings, quadriceps, and gastrocnemius, and greater fatigue rate of the VMO relative to the VL were found in the PFPS group as compared to the control group. DISCUSSION AND CONCLUSION. The results supported the hypothesized differences in the clinical and EMG characteristics between subjects with and without PFPS. When managing patients with PFPS, clinicians may need to take muscle fatigue rate into consideration in addition to the musculoskeletal factors. This study also established an alternative way to investigate the differential activities of the vasti in PFPS.
REFERENCE LIST
1. Powers CM, Landel R, Perry J. Timing and intensity of vastus muscle activity during functional activities in subjects with and without patellofemoral pain. Phys Ther 1996; 76(9):946-955.
2. Crossley K, Bennell K, Green S, Cowan S, McConnell J. Physical therapy for patellofemoral pain: a randomized, double-blinded, placebo-controlled trial. Am J Sports Med 2002; 30(6):857-865.
3. Fox TA. Dysplasia of the quadriceps mechanism: hypoplasia of the vastus medialis muscle as related to the hypermobile patella syndrome. Surg Clin North Am 1975; 55(1):199-226.
4. McConnell J. Management of patellofemoral problems. Man Ther 2000; 1(2):60-66.
5. Sheehy P, Burdett RG, Irrgang JJ, VanSwearingen J. An electromyographic study of vastus medialis oblique and vastus lateralis activity while ascending and descending steps. J Orthop Sports Phys Ther 1998; 27(6):423-429.
6. Doucette SA, Goble EM. The effect of exercise on patellar tracking in lateral patellar compression syndrome. Am J Sports Med 1992; 20(4):434-440.
7. Devereaux MD, Lachmann SM. Patello-femoral arthralgia in athletes attending a Sports Injury Clinic. Br J Sports Med 1984; 18(1):18-21.
8. McConnell J. Patellofemoral joint complications and considerations. In: Ellenbecker TS, editor. Knee ligament rehabilitation. New York: Churchill Livingstone, 2004: 202-223.
9. DeHaven KE, Lintner DM. Athletic injuries: comparison by age, sport, and gender. Am J Sports Med 1986; 14(3):218-224.
10. Juhn MS. Patellofemoral pain syndrome: a review and guidelines for treatment. Am Fam Physician 1999; 60(7):2012-2022.
11. McConnell J. The management of chondromalacia patellae: a long term solusion. Aust J Physiother 1986; 32(4):215-223.
12. Goodfellow J, Hungerford DS, Woods C. Patello-femoral joint mechanics and pathology. 2. Chondromalacia patellae. J Bone Joint Surg Br 1976; 58(3):291-299.
13. Boucher JP, King MA, Lefebvre R, Pepin A. Quadriceps femoris muscle activity in patellofemoral pain syndrome. Am J Sports Med 1992; 20(5):527-532.
14. Cowan SM, Bennell KL, Crossley KM, Hodges PW, McConnell J. Physical therapy alters recruitment of the vasti in patellofemoral pain syndrome. Med Sci Sports Exerc 2002; 34(12):1879-1885.
15. Weber MK, Ware AN. Knee rehabilitation. In: Andrews JR, Harrelson GL, Wilk KE, editors. Physical rehabilitation of the injured athlete. Philadelphia: W.B. Saunders Company, 1998: 330-404.
16. Grabiner MD, Koh TJ, Draganich LF. Neuromechanics of the patellofemoral joint. Med Sci Sports Exerc 1994; 26(1):10-21.
17. Fulkerson JP, Shea KP. Disorders of patellofemoral alignment. J Bone Joint Surg Am 1990; 72(9):1424-1429.
18. Heywood WB. Recurrent dislocation of the patella. J Bone Joint Surg Br 1961; 43B:508-517.
19. Powers CM. Rehabilitation of patellofemoral joint disorders: a critical review. J Orthop Sports Phys Ther 1998; 28(5):345-354.
20. Insall J, Falvo KA, Wise DW. Chondromalacia Patellae. A prospective study. J Bone Joint Surg Am 1976; 58(1):1-8.
21. Moller BN, Moller-Larsen F, Frich LH. Chondromalacia induced by patellar subluxation in the rabbit. Acta Orthop Scand 1989; 60(2):188-191.
22. Cowan SM, Bennell KL, Hodges PW, Crossley KM, McConnell J. Delayed onset of electromyographic activity of vastus medialis obliquus relative to vastus lateralis in subjects with patellofemoral pain syndrome. Arch Phys Med Rehabil 2001; 82(2):183-189.
23. Huberti HH, Hayes WC. Patellofemoral contact presures. J Bone Joint Surg Am 1984; 66:715-724.
24. Voight ML, Wieder DL. Comparative reflex response times of vastus medialis obliquus and vastus lateralis in normal subjects and subjects with extensor mechanism dysfunction. An electromyographic study. Am J Sports Med 1991; 19(2):131-137.
25. Tang SF, Chen CK, Hsu R, Chou SW, Hong WH, Lew HL. Vastus medialis obliquus and vastus lateralis activity in open and closed kinetic chain exercises in patients with patellofemoral pain syndrome: an electromyographic study. Arch Phys Med Rehabil 2001; 82(10):1441-1445.
26. Karst GM, Willett GM. Onset timing of electromyographic activity in the vastus medialis oblique and vastus lateralis muscles in subjects with and without patellofemoral pain syndrome. Phys Ther 1995; 75(9):813-823.
27. Souza DR, Gross MT. Comparison of vastus medialis obliquus: vastus lateralis muscle integrated electromyographic ratios between healthy subjects and patients with patellofemoral pain. Phys Ther 1991; 71(4):310-316.
28. Witvrouw E, Sneyers C, Lysens R, Victor J, Bellemans J. Reflex response times of vastus medialis oblique and vastus lateralis in normal subjects and in subjects with patellofemoral pain syndrome. J Orthop Sports Phys Ther 1996; 24(3):160-165.
29. Callaghan MJ, McCarthy CJ, Oldham JA. Electromyographic fatigue characteristics of the quadriceps in patellofemoral pain syndrome. Man Ther 2001; 6(1):27-33.
30. Hanten WP, Schulthies SS. Exercise effect on electromyographic activity of the vastus medialis oblique and vastus lateralis muscles. Phys Ther 1990; 70(9):561-565.
31. LeVeau BF, Rogers C. Selective training of the vastus medialis muscle using EMG biofeedback. Phys Ther 1980; 60(11):1410-1415.
32. Schulz DA. Anatomy. In: Ellenbecker TS, editor. Knee Ligament Rehabilitation. New York: Churchill Livingstone, 2000: 1-15.
33. Fulkerson JP, Hungerford DS. Normal Anotomy. Disorders of the Patellofemoral Joint. Baltinore: Williams & Wilkins, 1990: 1-22.
34. Weber MD, Ware AN. Knee rehabilitation. In: Andrews JR, Harrelson GL, Wilk KE, editors. Physical rehabilitation of the injured athlete. Philadelphia: W.B. Saunders Company, 1998: 330-404.
35. Merchant AC, Mercer RL, Jacobsen RH, Cool CR. Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am 1974; 56(7):1391-1396.
36. McConnell J. Patellofemoral joint complications and considerations. In: Ellenbecker TS, editor. Knee ligament rehabilitation. New York: Churchill Livingstone, 2000: 202-223.
37. Lieb FJ, Perry J. Quadriceps function. An anatomical and mechanical study using amputated limbs. J Bone Joint Surg Am 1968; 50(8):1535-1548.
38. Fulkerson JP, Hungerford DS. Biomechanics of the Patellofemoral Joint. Disorders of the Patellofemoral Joint. Baltinore: Williams & Wilkins, 1990: 23-38.
39. Matthews LS, Sonstegard DA, Henke JA. Load bearing characteristics of the patello-femoral joint. Acta Orthop Scand 1977; 48(5):511-516.
40. Goodfellow J, Hungerford DS, Zindel M. Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg Br 1976; 58(3):287-290.
41. Kwak SD, Colman WW, Ateshian GA, Grelsamer RP, Henry JH, Mow VC. Anatomy of the human patellofemoral joint articular cartilage: surface curvature analysis. J Orthop Res 1997; 15(3):468-472.
42. Grelsamer RP, Klein JR. The biomechanics of the patellofemoral joint. J Orthop Sports Phys Ther 1998; 28(5):286-298.
43. Steinkamp LA, Dillingham MF, Markel MD, Hill JA, Kaufman KR. Biomechanical considerations in patellofemoral joint rehabilitation. Am J Sports Med 1993; 21(3):438-444.
44. Hehne HJ. Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop 1990;(258):73-85.
45. Powers CM, Shellock FG, Pfaff M. Quantification of patellar tracking using kinematic MRI. J Magn Reson Imaging 1998; 8(3):724-732.
46. Shellock FG, Mink JH, Deutsch AL, Fox JM. Patellar tracking abnormalities: clinical experience with kinematic MR imaging in 130 patients. Radiology 1989; 172(3):799-804.
47. Wilk KE, Davies GJ, Mangine RE, Malone TR. Patellofemoral disorders: a classification system and clinical guidelines for nonoperative rehabilitation. J Orthop Sports Phys Ther 1998; 28(5):307-322.
48. Fulkerson JP, Hungerford DS. Dysplaias. Disorders of the Patellofemoral Joint. Baltinore: Williams & Wilkins, 1990: 123-135.
49. Powers CM, Maffucci R, Hampton S. Rearfoot posture in subjects with patellofemoral pain. J Orthop Sports Phys Ther 1995; 22(4):155-160.
50. Hungerford DS, Barry M. Biomechanics of the patellofemoral joint. Clin Orthop 1979;(144):9-15.
51. Schulthies SS, Francis RS, Fisher AG, Van de Graaff KM. Does the Q angle reflect the force on the patella in the frontal plane? Phys Ther 1995; 75(1):24-30.
52. Guerra JP, Arnold MJ, Gajdosik RL. Q angle: effects of isometric quadriceps contraction and body position. J Orthop Sports Phys Ther 1994; 19(4):200-204.
53. Malek M, Mangine R. Patellofemoral pain syndromes: A comprehensive and conservaive approach. J Orthop Sports Phys Ther 1981; 2(3):108-116.
54. Hvid I, Andersen LI. The quadriceps angle and its relation to femoral torsion. Acta Orthop Scand 1982; 53(4):577-579.
55. Horton MG, Hall TL. Quadriceps femoris muscle angle: normal values and relationships with gender and selected skeletal measures. Phys Ther 1989; 69(11):897-901.
56. Woodland LH, Francis RS. Parameters and comparisons of the quadriceps angle of college-aged men and women in the supine and standing positions. Am J Sports Med 1992; 20(2):208-211.
57. Messier SP, Davis SE, Curl WW, Lowery RB, Pack RJ. Etiologic factors associated with patellofemoral pain in runners. Med Sci Sports Exerc 1991; 23(9):1008-1015.
58. le Damany PG. Technique of tibial tropometry. 1903. Clin Orthop 1994;(302):4-10.
59. Hutter CG, Scott W. Tibial torsion. J Bone Joint Surg Am 1949; 31:511-518.
60. Malekafzali S, Wood MB. Tibial torsion--a simple clinical apparatus for its measurement and its application to a normal adult population. Clin Orthop 1979;(145):154-157.
61. Butler-Manuel PA, Guy RL, Heatley FW. Measurement of tibial torsion--a new technique applicable to ultrasound and computed tomography. Br J Radiol 1992; 65(770):119-126.
62. Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther 2003; 33(11):677-685.
63. le Damany PG. La torsion du tibia: normale, pathologique, experimentale. J Anat Physiol 2004; 45:598.
64. Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther 2003; 33(11):639-646.
65. Powers CM, Chen PY, Reischl SF, Perry J. Comparison of foot pronation and lower extremity rotation in persons with and without patellofemoral pain. Foot Ankle Int 2002; 23(7):634-640.
66. Kernozek TW, Greer NL. Quadriceps angle and rearfoot motion: relationships in walking. Arch Phys Med Rehabil 1993; 74(4):407-410.
67. Bruner P, Khan K. Anterior Knee Pain. Clinical Sports Injury. New York: McGraw-Hill, 2001: 464-491.
68. Smith AD, Stroud L, McQueen C. Flexibility and anterior knee pain in adolescent elite figure skaters. J Pediatr Orthop 1991; 11(1):77-82.
69. Grabiner MD, Koh TJ, Miller GF. Fatigue rates of vastus medialis oblique and vastus lateralis during static and dynamic knee extension. J Orthop Res 1991; 9(3):391-397.
70. Morrish GM, Woledge RC. A comparison of the activation of muscles moving the patella in normal subjects and in patients with chronic patellofemoral problems. Scand J Rehabil Med 1997; 29(1):43-48.
71. Owings TM, Grabiner MD. Motor control of the vastus medialis oblique and vastus lateralis muscles is disrupted during eccentric contractions in subjects with patellofemoral pain. Am J Sports Med 2002; 30(4):483-487.
72. Kasman GS, Cram JR, Wolf SL. Surface electromyography and patellofemoral dysfunction. In: Grelsamer R, McConnell J, editors. The Patella. A team approach. Gaithersburg: Aspen Publishers, 1998: 137-175.
73. Pullman SL, Goodin DS, Marquinez AI, Tabbal S, Rubin M. Clinical utility of surface EMG: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology 2000; 55(2):171-177.
74. Turker KS. Electromyography: some methodological problems and issues. Phys Ther 1993; 73(10):698-710.
75. Soderberg GL, Cook TM. Electromyography in biomechanics. Phys Ther 1984; 64(12):1813-1820.
76. Cesarelli M, Bifulco P, Bracale M. Quadriceps muscles activation in anterior knee pain during isokinetic exercise. Med Eng Phys 1999; 21(6-7):469-478.
77. MacIntyre DL, Robertson DG. Quadriceps muscle activity in women runners with and without patellofemoral pain syndrome. Arch Phys Med Rehabil 1992; 73(1):10-14.
78. Edwards RHT. Human muscle funciton and fatigue. In: Porter R, Whejan J, editors. Human Muscle Fatigue: Physiological Mechanisms. London: Ciba Foundation Symposium, 1981: 1-18.
79. Mannion AF, Dolan P. Relationship between myoelectric and mechanical manifestations of fatigue in the quadriceps femoris muscle group. Eur J Appl Physiol Occup Physiol 1996; 74(5):411-419.
80. Basmajian J, De Luca CJ. Muscle Fatigue and Time-Dependent Parameters of teh Surface EMG Signal. In: Butler John, editor. Muscles Alive. Baltimore: Williams &Wilkins, 1985: 201-222.
81. Roy SH, De Luca CJ, Casavant DA. Lumbar muscle fatigue and chronic lower back pain. Spine 1989; 14(9):992-1001.
82. Lindstrom L, Magnusson R, Petersen I. Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography 1970; 10(4):341-356.
83. Merletti R, Knaflitz M, DeLuca CJ. Electrically evoked myoelectric signals. Crit Rev Biomed Eng 1992; 19(4):293-340.
84. Mannion AF, Dolan P. Electromyographic median frequency changes during isometric contraction of the back extensors to fatigue. Spine 1994; 19(11):1223-1229.
85. Dedering A, Roos af HM, Elfving B, Harms-Ringdahl K, Nemeth G. Between-days reliability of subjective and objective assessments of back extensor muscle fatigue in subjects without lower-back pain. J Electromyogr Kinesiol 2000; 10(3):151-158.
86. Hasson SM, Williams JH, Signorile JF. Fatigue-induced changes in myoelectric signal characteristics and perceived exertion. Can J Sport Sci 1989; 14(2):99-102.
87. Brody LR, Pollock MT, Roy SH, De Luca CJ, Celli B. pH-induced effects on median frequency and conduction velocity of the myoelectric signal. J Appl Physiol 1991; 71(5):1878-1885.
88. Bouissou P, Estrade PY, Goubel F, Guezennec CY, Serrurier B. Surface EMG power spectrum and intramuscular pH in human vastus lateralis muscle during dynamic exercise. J Appl Physiol 1989; 67(3):1245-1249.
89. Vestergaard-Poulsen P, Thomsen C, Sinkjaer T, Stubgaard M, Rosenfalck A, Henriksen O. Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy--with application to muscle fatigue. Electroencephalogr Clin Neurophysiol 1992; 85(6):402-411.
90. Mortimer JT, Magnusson R, Petersen I. Conduction velocity in ischemic muscle: effect on EMG frequency spectrum. Am J Physiol 1970; 219(5):1324-1329.
91. Kranz H, Williams AM, Cassell J, Caddy DJ, Silberstein RB. Factors determining the frequency content of the electromyogram. J Appl Physiol 1983; 55(2):392-399.
92. Johnson MA, Polgar J, Weightman D, Appleton D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 1973; 18(1):111-129.
93. Wickiewicz TL, Roy RR, Powell PL, Edgerton VR. Muscle architecture of the human lower limb. Clin Orthop 1983;(179):275-283.
94. Grana WA, Kriegshauser LA. Scientific basis of extensor mechanism disorders. Clin Sports Med 1985; 4(2):247-257.
95. Berchuck M, Andriacchi TP, Bach BR, Reider B. Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 1990; 72(6):871-877.
96. Gerber C, Hoppeler H, Claassen H, Robotti G, Zehnder R, Jakob RP. The lower-extremity musculature in chronic symptomatic instability of the anterior cruciate ligament. J Bone Joint Surg Am 1985; 67(7):1034-1043.
97. Lieber RL, Friden JO, Hargens AR, Danzig LA, Gershuni DH. Differential response of the dog quadriceps muscle to external skeletal fixation of the knee. Muscle Nerve 1988; 11(3):193-201.
98. Mariani PP, Caruso I. An electromyographic investigation of subluxation of the patella. J Bone Joint Surg Br 1979; 61-B(2):169-171.
99. Spencer JD, Hayes KC, Alexander IJ. Knee joint effusion and quadriceps reflex inhibition in man. Arch Phys Med Rehabil 1984; 65(4):171-177.
100. Nadeau S, Gravel D, Hebert LJ, Arsenault AB. Gait study of patients with patellofemoral pain syndrome. Gait Posture 1997; 5:21-27.
101. Salsich GB, Brechter JH, Powers CM. Lower extremity kinetics during stair ambulation in patients with and without patellofemoral pain. Clin Biomech (Bristol , Avon ) 2001; 16(10):906-912.
102. Ritter MA, DeRosa GP, Babcock JL. Tibial torsion? Clin Orthop 1976; 00(120):159-163.
103. Milner CE, Soames RW. A comparison of four in vivo methods of measuring tibial torsion. J Anat 1998; 193 ( Pt 1):139-144.
104. Olerud C, Berg P. The variation of the Q angle with different positions of the foot. Clin Orthop 1984;(191):162-165.
105. Gajdosik RL, Rieck MA, Sullivan DK, Wightman SE. Comparison of four clinical tests for assessing hamstring muscle length. J Orthop Sports Phys Ther 1993; 18(5):614-618.
106. Kendall FP. Muscle length tests and stretching exercise . In: Kendall FP, editor. Muscle testing and fundation. Williams & Wilkins, 1993: 27-66.
107. Singer BJ, Jegasothy GM, Singer KP, Allison GT. Evaluation of serial casting to correct equinovarus deformity of the ankle after acquired brain injury in adults. Arch Phys Med Rehabil 2003; 84(4):483-491.
108. Salsich GB, Brechter JH, Farwell D, Powers CM. The effects of patellar taping on knee kinetics, kinematics, and vastus lateralis muscle activity during stair ambulation in individuals with patellofemoral pain. J Orthop Sports Phys Ther 2002; 32(1):3-10.
109. Gilleard W, McConnell J, Parsons D. The effect of patellar taping on the onset of vastus medialis obliquus and vastus lateralis muscle activity in persons with patellofemoral pain. Phys Ther 1998; 78(1):25-32.
110. Basmajian J, Blumenstein. Electrode Placement in EMG Biofeedback. WIlliams & Wilkins, 1980: 82.
111. Cram JR, Kasman GS. Electrode Placements. Introduction to surface electromyography. Maryland: An Aspen Puplication , 1998: 330-404.
112. Doxey GE, Eisenman P. The influence of patellofemoral pain on electromyogaphic activity during submaximal isometric contraction. J Orthop Sports Phys Ther 1987; 9(6):211-216.
113. Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health 1990; 16 Suppl 1:55-58.
114. Lieb FJ, Perry J. Quadriceps function. An electromyographic study under isometric conditions. J Bone Joint Surg Am 1971; 53(4):749-758.
115. Worrell TW, Perrin DH, Gansneder BM, Gieck JH. Comparison of isokinetic strength and flexibility measures between hamstring injuried and noninjuried athletes. J Orthop Sports Phys Ther 1991; 13:118-125.
116. Caylor D, Fites R, Worrell TW. The relationship between quadriceps angle and anterior knee pain syndrome. J Orthop Sports Phys Ther 1993; 17(1):11-16.
117. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 2000; 32(9 Suppl):S498-S504.
118. Ainsworth BE, Haskell WL, Leon AS, Jacobs DR, Jr., Montoye HJ, Sallis JF et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 1993; 25(1):71-80.
119. Turner MS. The association between tibial torsion and knee joint pathology. Clin Orthop 1994;(302):47-51.
120. Cooke TD, Price N, Fisher B, Hedden D. The inwardly pointing knee. An unrecognized problem of external rotational malalignment. Clin Orthop 1990;(260):56-60.
121. Reese NB, Bandy WD. Use of an inclinometer to measure flexibility of the iliotibial band using the Ober test and the modified Ober test: differences in magnitude and reliability of measurements. J Orthop Sports Phys Ther 2003; 33(6):326-330.
122. Puniello MS. Iliotibial band tightness and medial patellar glide in patients with patellofemoral dysfunction. J Orthop Sports Phys Ther 1993; 17(3):144-148.
123. Fairbank JC, Pynsent PB, van Poortvliet JA, Phillips H. Mechanical factors in the incidence of knee pain in adolescents and young adults. J Bone Joint Surg Br 1984; 66(5):685-693.
124. Caylor D, Fites R, Worrell TW. The relationship between quadriceps angle and anterior knee pain syndrome. J Orthop Sports Phys Ther 1993; 17(1):11-16.
125. Hughston JC. Patellar subluxation. A recent history. Clin Sports Med 1989; 8(2):153-162.
126. Natri A, Kannus P, Jarvinen M. Which factors predict the long-term outcome in chronic patellofemoral pain syndrome? A 7-yr prospective follow-up study. Med Sci Sports Exerc 1998; 30(11):1572-1577.
127. Witvrouw E, Lysens R, Bellemans J, Cambier D, Vanderstraeten G. Intrinsic risk factors for the development of anterior knee pain in an athletic population. A two-year prospective study. Am J Sports Med 2000; 28(4):480-489.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top