跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭康詠
研究生(外文):Kang-Yung Peng
論文名稱:清肝明目中草藥篩選平台之建立
論文名稱(外文):Establishment the plateform for screening the "Ching-Gan-Ming-Mu" herbal medicine
指導教授:吳榮燦
指導教授(外文):Rong-Tsun Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:116
中文關鍵詞:醣化最終產物糖尿病併發症肝生長因子
外文關鍵詞:advanced glycation end productsdiabetic complicationshepatocyte growth factor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
AGEs (advanced glycation end products) 是由於糖尿病患者失去對血糖調控的恆定性,導致體內功能性蛋白質長期暴露在高血糖的環境下,發生非酵素性醣化作用後所產生的有害物質。近年來許多研究也證實,體內過多的AGEs堆積,是導致糖尿病腎臟、視網膜與神經等相關併發症的主因,也正因為如此,一個好的anti-AGEs策略對於糖尿病併發症的治療而言是相當重要的。而本研究主要是在探討AGEs所導致的糖尿病併發症與清肝明目中草藥間的相關性,並希望能夠尋找到有效的中草藥,藉由促進糖尿病患者體內AGEs的降解及排除,達到預防或治療糖尿病併發症所造成的傷害。
目前有越來越多的證據顯示,肝臟非實質部細胞 (nonparenchymal cells) 以及視網膜色素上皮細胞 (retinal pigment epithelial cells),分別在清除全身以及視網膜局部堆積的AGEs機制上,扮演著重要的角色。因此在本研究中,我們先以小鼠肝臟非實質部的庫氏細胞 (Kupffer cells) 以及牛眼的視網膜色素上皮細胞 (retinal pigment epithelial cells) 建構一個細胞吞噬活性的藥物篩選平台。在分別篩選53種中草藥之後,挑選對上述兩種細胞吞吃活性皆有明顯促進效果的四種中草藥,包括山藥、石斛、車前子、女真子,和一天然的胜肽物質tuftsin作為研究的目標藥物,並進一步分析細胞在給予這些藥物後,其溶酶體酵素 (lysosomal enzyme) 降解AGEs的能力是否會受藥物的影響而有所改變。此外,我們也利用觀察HGF, HGF receptor (c-met), Cathepsin D, CD36 (scavenger receptor), VEGF, PEDF等基因mRNA表現情形,來了解清肝明目中草藥,在促進AGEs降解和降低AGEs導致損傷方面的相關作用機制。由實驗結果發現,Kupffer cells及RPE cells在給予上述的目標藥物之後,其HGF 與Cathepsin D及CD36等基因的mRNA表現量和細胞吞噬活性及降解AGEs的能力大都呈現正相關的現象。所以我們認為,HGF確實與AGEs的降解機制具有密不可分的關係,這也可能提供了清肝與明目具有相關性的重要證據。
在動物模式方面,我們利用STZ (streptozotocin) 誘發出糖尿病併發症的小鼠動物模式,並進一步觀察利用體外 (in vitro) 藥物篩選平台所篩選出來的有效藥物,在此活體試驗中是否也具有相同的效果。結果發現,山藥粗萃取物 (PH3) 可以藉由降低小鼠血中AGEs含量以及改善其腎臟功能,進而達到預防或治療糖尿病小鼠肝臟、腎臟及視網膜病變發生的目的。此外,為了進一步了解山藥粗萃取物對於動物體內清除AGEs的能力,以及對AGEs所導致的相關病理現象有無直接影響,我們建立了一個靜脈注射AGE-MSA的小鼠動物模式來進行觀察。實驗結果顯示山藥粗萃取物 (PH3) 確實可以藉由促進小鼠清除循環中AGEs的能力,進而改善AGEs所導致的腎臟損傷。
The formation of advanced glycation end products (AGEs) correlates with glycemic level out of control. Growing evidence shows that AGEs accelerated chemical modification of proteins by glucose during hyperglycemia contributes to the pathogenesis of diabetic complications including nephropathy, retinopathy and neuropathy. It is becoming clear that anti-AGEs strategies may play an important role in the treatment of diabetic patients. The aim of this study is to investigate the relationship between the pathogenesis of AGEs induced diabetic complications and the effective mechanism of Chinese herbal medicine. In addition, we try to explore whether the Chinese herbal medicine could accelerate the AGEs elimination from diabetic patient efficiently.
It is also becoming clear that hepatic nonparenchymal cells such as hepatic endothelium cells or Kupffer cells may also play an important role in circulated AGE-degradation. Furthermore, retinal pigment epithelial cells may have the ability to uptake and degrade local AGEs. For this reason, we use mice Kupffer cells and bovine retinal pigment epithelial cells to establish the platform of phagocytosis activity for screen anti-AGEs drugs from Chinese herbs. After screen 53 kinds of drugs in two phagocytosis screening system, we select five subjects to be the target drugs, which include the methanol extract of Dioscorea spp., Dendrobii Caulis, Plantato asiatica, Ligustrum lucidum and a natural peptide tuftsin. We furtherly found these drugs enhanced the degradation of AGEs obviously, whereas the lysosomal extract activity were also be increased. For further investigation of the mechanism for enhancing AGE degradation, the mRNA expression level of HGF, HGF receptor (c-met), Cathepsin D, CD36 (scavenger receptor), VEGF, and PEDF were also examined in Kupffer cells and retinal pigment epithelial cells. We found that the mRNA expression level of HGF was positively related to the mRNA expression level of Cathepsin D, CD36, phagocytosis activity and the ability of AGEs degradation after the drugs treatment. These data suggest that HGF may play an important role in the mechanism of AGEs degradation.
In animal studies, we have evaluated the effect of PH3 on the functional and histological alterations of streptozotocin (STZ)-induced diabetes in mice. Our result shows that the processed extract of Dioscorea (PH3) could decrease the serum level of AGEs and prevent liver, kidneys and retina from pathological changes dose dependently. Finally, we developed an animal model to demonstrate the effect of PH3 in AGEs induced diabetic complications. Our result shows that PH3 could promote the degration and clearance of AGEs and improve the function of kidneys.
1. Vlassara H, and Palace R. Diabetes and advanced glycation endproducts. J. Intern. Med. 251:87-101, 2002.
2. Deyl Z and Miksik I. Post-translational non-enzymatic modification of proteins I. Chromatography of marker adducts with special emphasis to glycation reactions. J. Chromatogr. B. Biomed. Sci. Appl. 699: 287-309, 1997.
3. Singh R, Barden A, Mori T, and Beilin L. Advanced glycation end-products: a review. Diabetologia 44:129-146, 2001.
4. Thornalley J. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell. Mol. Biol. 44: 1013-1023, 1998.
5. Grierson I, Heathcote L, Hiscott P, Hogg P, Briggs M, and Hagan S. Scavenger receptors that recognize advanced glycation end products. Trends Cardiovasc Med. 12: 258-262, 2002.
6. Radoff S, Cerami A, and Vlassara H. Isolation of surface binding protein specific for advanced glycosylation end products from mouse macrophage-derived cell line RAW 264.7. Diabetes 39: 1510-1518, 1990.
7. Yang Z, Makita Z, Horii Y, Brunelle S, Cerami A, Sehajpal P, Suthanthiran M, and Vlassara H. Two novel rat liver membrane proteins that bind advanced glycosylation endproducts: relationship to macrophage scavenger receptor for glucose modified proteins. J. Exp. Med. 174: 515-524, 1991.
8. Goh C, Lim P, Ong H, Siak B, Cao X, Tan H, and Guy R. Identification of p90, a prominent tyrosine-phosphorylated protein in fibroblast growth factor stimulated cells, as 80K-H. J. Biol. Chem. 271: 5832-5838, 1996.
9. Schmidt M, Yan D, Brett J, Mora R, Nowygrod R, and SternD. Regulation of human mononuclear phagocyte migration by cell surface-binding protein for advanced glycation end products. J. Clin. Invest. 91:2155-2168, 1993.
10. Stern M, Yan D, Yan F, and Schmidt M. Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res. Rev. 1: 1-15, 2002.
11. Smedsrod B, Melkko J, Araki N, Sano H, and Holiuchi S. Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cell. Biochem J. 322: 567-573, 1997.
12. Kikuchi S, Shinpo K, Takeuchi M, Yamagishi S, Makita Z, Sasaki N, Tashiro K. Glycation--a sweet tempter for neuronal death. Brain Res Brain Res Rev. 41: 306-23, 2003.
13. Kilhovd K, Berg J, Birkeland I, Thorsby P, and Hanssen F. Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care 22:1543-1548, 1999.
14. Bucala R, Makita Z, Vega G, Grundy S, Koschinsky T, Cerami A and Vlassara H. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc. Natl. Acad. Sci. USA. 91:9441-9445, 1994.
15. Mori T, Takahashi K, Higashi T, Kawabe Y, Kodama T, and Horiuchi S. Localization of glycation of advanced glycation end products of maillard reaction in bovine tissue and their endocytosis by macrophage scanvenger receptor. Exp. Molec. Pathol. 63:135-152, 1995.
16. Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y and Yamamoto H. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-αthrougth nuclear factor-kB, and 17β-Estradiol through Sp-1 in human vascular endothelial cells. J. Biol. Chem. 275: 25781-25790, 2000.
17. Ruggiero-Lopez, D., Rellier, N., Lecomte, M., Lagarde, M., and Wiernsperger, N. Growth modulation of retinal microvascular cells by early and advanced glycation products. Diabetes Res. Clin. Pract. 34: 135-142, 1997.
18. Liu BF, Miyata S, Kojima H, Uriuhara A, Kusunoki H, Suzuki K, Kasuga M. Low phagocytic activity of resident peritoneal macrophages in diabetic mice: relevance to the formation of advanced glycation end products. Diabetes. 48: 2074-82, 1999.
19. Shanmugam N, Kim YS, Lanting L, Natarajan R. Regulation of cyclooxygenase-2 expression in monocytes by ligation of the receptor for advanced glycation end products. J Biol Chem. 278: 34834-44, 2003.
20. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J Med. 329: 977-986, 1993.
21. Horiuchi S. The liver is the main site for metabolism of circulating advanced glycation end products. J. Hepatol. 36: 123-125, 2002.
22. Vlassara H, Brownlee M, and Cerami A. High-affinity-receptor-mediated uptake and degradation of glucose-modified proteins: A potential mechanism or the removal of senescent macromolecules. Proc. Natl. Acad. Sci. USA 82: 5588-5592, 1985.
23. Takata K, Horiuchi S, Araki N, Shiga M, Saitoh M, and Morino Y. Endocytic uptake of nonenzymatically glycosylated proteins is mediated by a scavenger receptor for aldehyde-modified proteins. J. Biol. Chem. 263: 14819-14825, 1988.
24. Shaw M and Crabbe J. Non-specific binding of advanced-glycosylation end products to macrophages outweighs specific receptor-mediated interactions. Biochem. J. 304: 121-129, 1994.
25. Sebekova K, Kupcova V, Schinzel R, and Heidland, A. Markedly elevated levels of plasma advanced glycation end products in patients with liver cirrhosis - amelioration by liver transplantation. J. Hepatol. 36: 66-71, 2002.
26. Chibber R, Molinatti A, Rosatto N, Lambourne B, and Kohner M. Toxic action of advanced glycation end products on cultured retinal capillary pericytes and endothelial cells: relevance to diabetic retinopathy. Diabetologia 40: 156-164, 1997.
27. Bok D. Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 26: 1659-1694, 1985.
28. Ohgami N, Nagai R, Ikemoto M, Arai H, Miyazaki A, Hakamata H, Horiuchi S, and Nakayama H. CD36, serves as a receptor for advanced glycation endproducts (AGE). J. Diabetes Complications. 16: 56-59, 2002.
29. 蕭朝陽 醣化白蛋白在肝臟降解途徑的探討 國立陽明大學生物藥學研究所碩士論文(2001)
30. Cavaney, D.M et al. Isolation, sequencing and tissue distribution of a partial cathepsin D cDNA clone from human RPE cells. Aust. N. J. Ophthalmol. 24:75-78, 1996.
31. Rakoczy E, Lai M, Baines M, Di Grandi S, Fitton H, and Constable J. Modulation of cathepsin D activity in retinal pigment epithelial cells. Biochem. J. 324:935-940, 1997.
32. Maria E and Ray J. Age-realted increase in activity of specific lysosomal enzymes in the human retinal pigment epithelium. Exp. Eye Res. 65: 231-240, 1997.
33. 賴思良 霍山石斛對視網膜病變及免疫調節作用的研究 國立陽明大學生物藥學研究所碩士論文(2001)
34. Weidner M, Arakaki N, Hartmann G., Vandekerckhove J, Weingart S, Rieder H, Fonatsch C, Tsubouchi H, Hishida T, Daikuhara Y, and Birchmeier W. Evidence for identity of human scatter factor and human hepatocyte growth factor. Proc Natl. Acad. Sci. USA. 88: 7001-5, 1991.
35. Zarnegar R and Michalopoulos K. The many faces of hepatocyte growth factor: from hepatopoiesis to hematopiesis. J. Cell Biol. 129: 1177-80, 1995.
36. Matsumoto K and Nakamura T. Emerging multipotent aspects of hepatocyte growth factor. J. Biochem (Tokyo). 119: 591-600, 1996.
37. He M, He S, Garmer A, Ryan J, and Hinron R. Retinal pigment epithelial cells secrete and respond to hepatocyte growth factor. Biochem. Biophys. Res. Commun. 249:253-257, 1998.
38. Grierson I, Heathcote L, Hiscott P, Hogg P, Briggs M, and Hagan S. Hepatocyte growth factor/scatter factor in the eye. Prog. Retin. Eye Res. 19: 779-802, 2000.
39. 林佳燕 霍山石斛對視網膜色素上皮細胞及視網膜細胞的生物活性及有效成分之研究 國立陽明大學生物藥學研究所碩士論文(1999)
40. Mizuno S, Nakamura T. Suppressions of chronic glomerular injuries and TGF-{beta}1 production by HGF in attenuation of murine diabetic nephropathy. Am J Physiol Renal Physiol. 286: F134-F143, 2004.
41. Murakami S, Miyamoto Y, Fujiwara C, Takeuchi S, Takahashi S, and Okuda K. Expression and action of hepatocyte growth factor in bovine endometrial stromal and epithelial cells in vitro. Mol. Reprod. Dev. 60: 472-480, 2001.
42. Shore P, Dietrich W, and Corcoran L. Corcoran1 Oct-2 regulates CD36 gene expression via a consensus octamer, which excludes the co-activator OBF-1. Nucleic Acids Res. 30: 1767-1773, 2002.
43. Ikari T, Hiraki A, Seki K, Sugiura T, Matsumoto K, and Shirasuna K. Involvement of hepatocyte growth factor in branching morphogenesis of murine salivary gland. Dev. Dyn. 228: 173-178, 2003.
44. Cohn J, Strong E, Hughes L, Mulfird J, Ashworth N, Melin M, and Taylor HL. Preparation and properties of serum and plasma proteins. IV. A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. J. American Chem. Soci. 68: 459-475, 1946.
45. He C, Sabol J, Mitsuhashi T, Vlassara H. Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes 48: 1308-1315, 1999.
46. Matsumoto K, Sano H, Nagai R, Suzuki H, Kodama T, Yoshida M, Ueda S, Smedsrod B, and Horiuchi, S. Endocytic uptake of advanced glycation end products by mouse liver sinusoidal endothelial cells is mediated by a scavenger receptor distinct from the macrophage scavenger receptor class A. Biochem. J. 352: 233-240, 2000.
47. Bhanushali K, Gilbert M, and McDougald R. Simple method to purify chicken immunoglobulin G. Poult Sci. 73: 1158-1161, 1994.
48. Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med. 182:389-400, 1995.
49. Wang R, Kudo M, Yokoyama M, Asano G. Roles of advanced glycation endproducts (AGE) and receptor for AGE on vascular smooth muscle cell growth. J. Nippon Med. Sch. 68: 472-481, 2001.
50. Smedsrod B, and Pertoft H. Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. J. Leukoc. Biol. 38: 213-230, 1985.
51. 施洽雯編著:實用病理學圖譜,藝軒出版社 1989.
52. 鄭永銘編著:病理學彩色圖譜,合記出版社 2002.
53. H.Georage Burkitt / Barbara Young / John H. Heath: Wheater’s Functional Histology,Churchill Livingstone 1999.
54. 孟景春、周仲英 中醫學概論 知音出版社 1999.
55. Hansen B, Svistounov D, Olsen R, Nagai R, Horiuchi S, and Smedsrod B. Advanced glycation end products impair the scavenger function of rat hepatic sinusoidal endothelial cells. Diabetologia 45: 1379-1388, 2002.
56. Miyata S, Liu F, Shoda H, Ohara T, Yamada H, Suzuki K, and Kasuga M. Accumulation of pyrraline-modified albumin in phagocytes due to reduced degradation by lysosomal enzymes. J. Biol. Chem. 272: 4037-42, 1997.
57. Febbraio M, Podrez A, Smith D, Hajjar P, Hazen L, Hoff F, Sharma K, and Silverstein L. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. Clin. Invest. 105:1049–1056, 2000.
58. 陳囿任 霍山石斛對腦神經細胞及視網膜色素上皮細胞作用機轉之研究 國立陽明大學生物藥學研究所碩士論文(2000)
59. Kubo S, Rodriguez T. Jr, Roh S, Oyedeji C, Romsdahl M and Nishioka K. Stimulation of phagocytic activity of murine Kupffer cells by tuftsin. Hepatology 19: 1044-1049, 1994.
60. Kubo S, Roh S, Oyedeji C, Romsdahl M, and Nishioka K. Effect of tuftsin on human Kupffer cell. Hepatogastroenterology 45: 2270-2274, 1998.
61. Zhang D, Lai C, Constable J, and Rakoczy E. A model for a blinding eye disease of the aged. Biogerontology 3: 61-66, 2002.
62. Kasper M, Schinzel R, Niwa T, Munch G, Witt M, Fehrenbach H, Wilsch- Brauninger M, Pehlke K, Hofer A, and Funk H. Experimental induction of AGEs in fetal L132 lung cells changes the level of intracellular cathepsin D. Biochem. Biophys. Res. Commun. 261: 175-182, 1999.
63. Aiello P, Avery L, Arrigg G, Keyt A, Jampel D, Shah T, Pasquale R, Thieme H, Iwamoto A, Park E, Nguyen V, Aiello M, Ferrrara N, and King G.. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Eng. J. Med. 331: 1480-1487, 1994.
64. Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, and Adamis P. Advanced glycation end products increase retinal VEGF expression. J. Clin. Invest. 10: 1219-1224, 1998.
65. Stitt W, Bhaduri T, McMullen B, Gardiner A, Archer B. Advanced glycation end products induce blood-retinal barrier dysfunction in normoglycemic rats. Mol. Cell Biol. Res. Commun. 3: 380-388, 2000.
66. Ogata N, Wada M, Otsuji T, Jo N, Tombran-Tink J, and Matsumura M. Expression of pigment epithelium-derived factor in normal adult rat eye and experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci.43: 1168-1175, 2002
67. Inagaki Y, Yamagishi S, Okamoto T, Takeuchi M, and Amano S. Pigment epithelium-derived factor prevents advanced glycation end products-induced monocyte chemoattractant protein-1 production in microvascular endothelial cells by suppressing intracellular reactive oxygen species generation. Diabetologia 46: 284-287, 2003.
68. Yamagishi S, Inagaki Y, Amano S, Okamoto T, Takeuchi M, and Makita Z. Pigment epithelium-derived factor protects cultured retinal pericytes from advanced glycation end product-induced injury through its antioxidative properties. Biochem. Biophys. Res. Commun. 296: 877-882, 2002.
69. Barber J, Lieth E, Khin A, Antonetti A, Buchanan G, and Gardner W. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J. Clin. Invest. 102: 783-791, 1998.
70. Aizu Y, Oyanagi K, Hu J, and Nakagawa H. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology. 22: 161-170, 2002.
71. Undie S, and Akubue I. Pharmacological evaluation of Dioscorea dumetorum tuber used in traditional antidiabetic therapy. Ethnopharmacol. 5: 133-144, 1986.
72. Iwu M, Okunji O, Ohiaeri O, Akah P, Corley D, and Tempesta S. Hypoglycaemic activity of dioscoretine from tubers of Dioscorea dumetorum in normal and alloxan diabetic rabbits. Planta Med. 56: 264-267, 1990.
73. Aizu Y, Oyanagi K, Hu J, Nakagawa H. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology. 22: 161-70, 2002.
74. Stitt A, Gardiner A, Alderson L, Canning P, Frizzell N, Duffy N, Boyle C, Januszewski S, Chachich M, Baynes W, Thorpe R, and Anderson L. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51: 2826-2832, 2002.
75. Forbes M, Cooper E, Thallas V, Burns C, Thomas C, Brammar C, Lee F, Grant L, Burrell A, Jerums G, and Osicka M. Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy. Diabetes 51: 3274-3282, 2002.
76. Shinohara M, Thornalley J, Giardino I, Beisswenger P, Thorpe R, Onorato J, and Brownlee M. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest. 101: 1142-1147, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top