( 您好!臺灣時間:2021/07/28 17:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yu-Ning Liu
論文名稱(外文):Use of Fluorescence Resonance Energy Transfer Technique to Investigate Enterovirus 71 2A Protease Activity In Vivo
指導教授(外文):Szu-Hao Kung
外文關鍵詞:EV712A proteaseFREThigh-throughput screening
  • 被引用被引用:1
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在用來研究細胞內蛋白質間作用的光譜學方法中,螢光共振能量移轉技術為一種極具潛力的技術。此方法已經應用在測量細胞內蛋白酶的作用。該方法的原理為被激發的螢光提供者,因為與螢光接受者的距離改變,而導致螢光接受者發射出不同波長的光譜。所以,我們擬建構帶有綠色螢光基因及紅色螢光基因的質體,兩個螢光基因間接有2A蛋白酶的切割序列,並將該質體穩定轉染一可被腸病毒71型感染的細胞,並將此穩定細胞株命名為HeLa-GsR。在488nm波長激發下可以看到HeLa-GsR表現出“橙色螢光”,這表示綠色螢光蛋白與紅色螢光蛋白之間產生了螢光共振能量轉移的現象。我們以腸病毒71型感染HeLa-GsR細胞後12小時即可觀察到受感染的細胞呈現綠色螢光,推測這可能是由於細胞內的融合螢光蛋白受到腸病毒71型2A蛋白酶的切割,因而使得兩個報告蛋白被分開同時也終止了這兩者之間的螢光共振能量轉移作用。我們也以抗綠色螢光蛋白之抗體來做西方墨點法的分析進一步地證實融合蛋白專一性的切割。而利用螢光分析儀(Victor2)來定量FRET現象顯示了當以0.5、2、4 M.O.I.之腸病毒71型感染細胞之後,FRET現象分別達到51.6%、58.4%、67.6%的減少,這指出病毒感染對細胞內FRET現象有劑量依賴效應。另外,我們選用腸病毒屬中的其它種病毒感染HeLa-GsR細胞,也可觀察到FRET現象遭到破壞;而接種與腸病毒不相關的病毒則FRET現象不會被阻斷。
An outbreak associated with enterovirus infections occurred in Taiwan area during the year of 1997, with moderate recurrences in the following years. Enterovirus type 71 (EV71) has been shown to play a major role in the severe syndromes, including encephalitis and muscular paralysis, as well as in the fatal cases during the outbreak. The EV71 2A protease was demonstrated to be a key protease responsible for essential steps in viral replication and pathogenesis in the infected cells, highlighting the importance of studying the 2A protease activity in a cell.
The fluorescence resonance energy transfer (FRET) technology has been one of the most promising spectroscopic tools for studying protein-protein interactions in living cells. By this methodology, cellular processes can be evidenced by spectral changes of the emission signal because of distance-dependent energy transfer from an excited fluorophore donor to a long-wavelength fluorophore acceptor. Hence, a recombinant construct composed of green fluorescent protein (GFP2) and red fluorescent protein (DsRed2), with a linker peptide containing the 2A protease cleavage sequences were constructed, followed by stable transfection in a cell line susceptible to EV71 infection, resulting a stable cell line designated HeLa-GsR. The HeLa-GsR cells displayed “orange fluorescence” under the excitation wavelength at 488 nm, indicating the generation of FRET effect between the GFP2 and DsRed2. As early as 18 h following infection of HeLa-GsR cells by EV71, the infected cells exhibited green fluorescence; this is presumably due to the cleavage of the fusion protein in vivo by EV71 2A protease, thereby separating the two reporter proteins and terminating FRET between the two labels. The specific cleavage of the fusion protein was substantiated by Western blot analysis using anti-GFP antibody. Quantitative measurement of the FRET phenomenon by a fluorometer (Victor2) revealed that the FRET effects were decreased to 51.6%, 58.4% and 67.6% following infection of EV71 with the multiplicity of infection at 0.5, 2 and 4, respectively, indicating a does-dependent effect. Infection with viruses that belong to enterovirus genus also disrupted the FRET, whereas inoculation with a distantly related virus did not appear to disrupt the FRET.
The system would be a valuable tool to investigate the action of a viral protease in a single cell, to identify specimens containing enteroviruses in general, as well as to serve as a miniaturized platform for high-throughput screening for anti-2A protease compounds.
徐月櫻 (2000). 腸病毒蛋白酵素2A之研究。國立陽明大學 醫學生物技術研究所 碩士論文。
陳欣怡 (2003). 第七十一型腸病毒2A蛋白酶之突變分析:探討對細胞凋亡的影響。國立陽明大學 醫學生物技術研究所 碩士論文。
疾病管制局網頁,www.cc.gov.tw , 2000年台灣地區定點醫師手足口病監視結果。
Ailsa G. et al. (2001). Imaging FRET between spectrally similar GFP molecules in single cells. Nature Biotechnology. 19,167-169.
Ammendolia, M. G. et al. (1999). Poliovirus infection induces apoptosis in CaCo-2 cells. Journal of Medical Virology 59, 122-129.
Bader B et al.(2001). A cGMP-dependent protein kinase assay for high throughput screening based on time-resolved fluorescence resonance energy transfer. J Biomol Screen.(4):255-64.
Barry J. Lampheart et al. (1993). Mapping the cleavage site in protein synthesis initiation factor eIF-4γ of the 2A proteases from human coxsackievirus and rhinovirus. The Journal of Biological Chemistry.268,19200-19203.
Bazan, J. F. & Fletterick, R. J. (1988). Viral cysteine protease are homologous to trypsin-like family of serine proteases: structural and functional implications. Proceeding of the National Academy of Science, USA 85, 7872-7876.
Belsham, G. J. and Sonenberg, N. (1996). RNA-protein interactions in regulation of picornavirus RNA translation. Microbiol. Rev. 60, 499-511.
Bevis BJ & Glick BS. (2002). Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol. 20(1):83-7.
Blom, N., et al. (1996). Cleavage site analysis in picornaviral polyproteins: Discovering cellular targets by neural networks. Protein Science 5: 2203-2216.
Brown, B. A. and Pallansch, M. A. (1995). Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. Virus Res. 39, 195-205.
Caponigro & Parker. (1996). Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol Rev. 60(1):233-249.
Carthy, C. M. et al. (1998). Caspase activation and specific cleavage of substrates after coxsackievirus B3-induced cytopathic effect in HeLa cells. J.Virol. 72, 7669-7675.
Chang, H. Y. and Yang, X. (2000). Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev. 64, 821-846.
Chang, L. Y., Huang, Y. C. & Lin, T. Y. (1998). Fulminant neurogenic pulmonary oedema with hand, foot, and mouth disease. The Lancet 352, 367-368.
Chumakov, M. et al. (1979). Enterovirus 71 isolated from cases of epidemic poliomyelitis- like disease in Bulgaria. Arch. Virol. 60, 329-340.
Clercq, ED. (2002). Strategies in the design of antiviral drugs. Nature Reviews/Drug Discovery. 1: 13-25.
Cornel Badorff et al. (2000). Enteroviral Protease 2A Directly Cleaves Dystrophin and Is Inhibited by a Dystrophin-based Substrate Analogue. The Journal of Biological Chemistry. Vol. 275, No. 15, 11191–11197.
Dalldrof, G. & Meknick, J L. (1965). Coxsackieviruses; in Horsfall FL Jr, tamm I (eds): Viral and Rickettsial Infections of man, ed 4. Philadelphia, Lippincott pp474-512.
Dalldrof, G. & Sickles, G. M. (1948). An unidentified, filterable agent isolated from the trees of children with paralysis. Science 108, 61-62.
Enders, J. F. et al. (1949). Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science 109, 85-87.
Erickson, M. G. et al. (2003). DsRed as a Potential FRET Partner with CFP and GFP. Biophysical Journal 85(1),599-611.
Förster, T. (1948). Intermolecular energy migration and fluorescence. Ann. Phys. (Leipzig) 2: 55–75.
Fujimoto, T. et al. (2002). Outbreak of central nervous system disease associated with hand, foot, and mouth disease in Japan during the summer of 2000: detection and molecular epidemiology of enterovirus 71. Microbiol Immunol. 46, 621-627.
Gilbert, G. L. et al. (1988). Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement. Pediatr. Infect. Dis. J. 7, 484-488.
Girard, S. et al. (1999). Poliovirus induces apoptosis in the mouse central nervous system. J. Virol. 73, 6066-6072.
Goldstaub, D. et al. ( 2000). Poliovirus 2A protease induces apoptotic cell death. Mol. Cell Biol. 20, 1271-1277.
Gradi, A. et al. (1998). Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc. Natl. Acad. Sci. U. S. A. 95, 11089-11094.
Green, D. R. (2000). Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1-4.
Haller, A. A. & Semler, B. L. (1995). Translation and host cell shutoff. In Human Enterovirus Infection, pp. 113-133. Edited by Harley A. Rotbart. Washington, DC: ASM Press.
Hamman BD et al. (2002). Binding of a Pleckstrin homology domain protein to phosphoinositide in membranes: a miniaturized FRET-based assay for drug screening. J Biomol Screen.7(1):45-55.
Henke, A. et al. (2000). Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva. J. Virol. 74, 4284-4290.
Herman B. (1989). Resonance energy transfer microscopy. Methods Cell Biol. 30:219-243.
Ho, M. et al. (1999). An epidemic of enterovirus 71 infection in Taiwan. The New England Journal of Medicine 341, 929-935.
Huber, S. A. (1992). Viral myocarditis--a tale of two diseases. Lab Invest. 66, 1-3.
Isabelle Sagot et al. (1999). Fluorescence resonance energy transfer between two green fluorescent proteins in living yeast. FEBS Letters. 447,53-57.
Iván Ventoso, Angel Barco, and Luis Carrasco. (1999). Genetic selection of Poliovirus 2Apro-binding peptides. Journal of Virology. 73, 814-818.
Jelachich, M. L. and Lipton, H. L. (1999). Restricted Theiler's murine encephalomyelitis virus infection in murine macrophages induces apoptosis. J. Gen. Virol. 80 ( Pt 7), 1701-1705.
Jones J et al. (2000). Development and application of a GFP-FRET intracellular caspase assay for drug screening. J Biomol Screen.(5):307-18.
Jore, J. et al. (1988). Poliovirus protein 3CD is the active protease for processing of the precursor protein P1 in vitro. J. Gen. Virol. 69 ( Pt 7), 1627-1636.
Johnston M. D. & Martin, S. J. (1971). Capsid and procapsid proteins of a bovine enterovirus. Journal of General Virology 11,71-79.
Jovin TM et al. (1989). Luminescence digital imaging microscopy. Annu Rev Biophys Biophys Chem. 18:271-308.
Karin A. et al. (2002). Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends in Endocrinology & Metabolism. 13, 415-421.
Kerekatte et al. (1999). Cleavage of Poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo:another mechanism for host protein synthesis shutoff? J Virol. 73(1):709-717.
Kevin Troug and Mitsuhiko Ikura. (2001). The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. Biophysical methods. 573-578.
Kitamura,N. et al. (1981). Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291, 547-553.
Kohl T et al. (2002). A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc Nat Acad Sci USA. 99(19):12161-6.
Krausslich, H. G. and Wimmer E. (1988). Viral proteinases. Annual Review of Biochemistry 57, 701-754.
Kuo, R. L. et al. (2002). Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J. Gen. Virol. 83, 1367-1376.
Landsteiner, K. & Popper, E. (1908). Mikroscopische Präparate von einem menschlichen und zwei Affenrückenmarken. Wien Klin Wochenschr 21, 1830.
Lin, T. Y. et al. (2003). Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis 9:291-293.
López-Guerrero,J. A. et al. (2000). Poliovirus induces apoptosis in the human U937 promonocytic cell line. Virology 272, 250-256.
Lum, L. C. et al. (1998). Fatal enterovirus 71 encephalomyelitis. J. Pediatr. 133, 795-798.
Marissen, W. E. and Lloyd, R. E. (1998). Eukaryotic translation initiation factor 4G is targeted for proteolytic cleavage by caspase 3 during inhibition of translation in apoptotic cells. Mol. Cell Biol. 18, 7565-7574.
Martin, S. J., Green, D. R., and Cotter, T. G. (1994). Dicing with death: dissecting the components of the apoptosis machinery. Trends Biochem. Sci. 19, 26-30.
Minor, P. et al. (1995). Picornaviridae. Archives of Virology Suppl 10, 329-336.
Morley, S. J., Curtis, P. S., and Pain, V. M. (1997). eIF4G: translation's mystery factor begins to yield its secrets. RNA 3, 1085-1104.
Muir, P. and van Loon, A. M. (1997). Enterovirus infections of the central nervous system. Intervirology 40, 153-166.
Nagy, G. et al. (1982). Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978 Arch.Virol.71, 217-227.
Nicklin, M. J. et al. (1987). Poliovirus polypeptide precursors: expression in vitro and processing by exogenous 3C and 2A proteinases. Proc. Natl. Acad. Sci. U. S. A 84, 4002-4006.
Nicolas Boute, Ralf Jockers and Tarik Issad. (2002). The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends in Pharmacological Sciences. 23, 351-354
Nifosi R & Tozzini V. (2003). Molecular dynamics simulations of enhanced green fluorescent proteins: effects of F64L, S65T and T203Y mutations on the ground-state proton equilibria. Proteins. 51(3):378-89.
Packard BZ et al. (1996). Profluorescent protease substrates: intramolecular dimers described by the exciton model. Proc Natl Acad Sci USA. 93(21):11640-5.
Pallansch, M. A. & Roos, R. P. (2000). Enteroviruses: Polioviruses, Coxsackieviruses, Echoviruses, and newer enteroviruses. Fields Virology, Lippincott- Raven.
Patick, AK and Potts KE. (1998). Protease inhibitors as antiviral agents. Clin Microbiol Rev. 11(4):614-27.
Pelletier, J. and Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325.
Pollok, B.A., and R. Heim. (1999). Using GFP in FRET-based applications. Trends Cell Biol.9:57–60.
Racaniello, VR. (2001). Picornaviridae and Their Replication. In: Fields Virology, 4th ed. Edited by D. M. Knipe & P. M. Howley. [editors]. Lippincott-Raven.
Sachs, A. B., Sarnow, P., and Hentze, M. W. (1997). Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89, 831-838.
Schmidt, N. J., Lennette, E. H., and Ho, H. H. (1974). An apparently new enterovirus isolated from patients with disease of the central nervous system. J. Infect.
See, D. M. and Tilles, J. G. (1995). Pathogenesis of virus-induced diabetes in mice. J. Infect. Dis. 171, 1131-1138.
Seipelt, J. et al. (2000). 2A proteinase of human rhinovirus cleaves cytokeratin 8 in infected HeLa cells. J. Biol. Chem. 275, 20084-20089.
Selvin, P.R. (2000). The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 7, 730–734.
Shimizu, H. et al. (1999). Enterovirus 71 from fatal and nonfatal cases of hand, foot and mouth disease epidemics in Malaysia, Japan and Taiwan in 1997-1998. Jpn. J. Infect. Dis. 52, 12-15.
Sommergruber, W. et al. (1992). Cleavage specificity on synthetic peptide substrates of human rhinovirus 2 proteinase 2A. Journal of Biological Chemistry 267, 22639-22644.
Sonenberg, N. and Gingras, A. C. (1998). The mRNA 5' cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell Biol. 10, 268-275.
Stryer L (1978). Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819-846.
Tolskaya, E. A et al. (1995). Apoptosis-inducing and apoptosis-preventing functions of poliovirus. J. Virol. 69, 1181-1189.
Toyoda, H. et al. (1986). A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45, 761-770.
Triantafilou, K. et al. (2001). A CD14-independent LPS receptor cluster. Nat. Immunol. 2, 338–345.
Tsien, R.Y. et al. (1993). FRET for studying intracellular signalling. Trends Cell Biol. 3, 243–245.
Tsunoda, I., Kurtz, C. I., and Fujinami, R. S. (1997). Apoptosis in acute and chronic central nervous system disease induced by Theiler's murine encephalomyelitis virus. Virology 228, 388-393.
Uster PS, Pagano RE. (1986). Resonance energy transfer microscopy:observations of membrane-bound fluorescent probes in model membranes and in living cells. J Cell Biol, 103:1221-1234.
van Roessel, P. and Brand, A.H. (2002). Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nat. Cell Biol. 4, E15–20.
Wang, S. M et al. (1999). Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clinical Infectious Diseases 29, 184-190.
Wang, S. M et al. (2003). Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: roles of cytokines and cellular immune activation in patients with pulmonary edema. J Infect Dis 188, 564-570.
Wu, P. and Brand, L. (1994). Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13.
Wurch, T. et al. (2001). Agonist-independent and dependent oligomerization of dopamine D(2) receptors by fusion to fluorescent proteins. FEBS Lett. 507, 109–113.
Xiang Xu et al. (1998). Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Research. Vol. 26, No. 8. 2034–2035
Xiong, D. et al. (2002). Dystrophin deficiency markedly increases enterovirus- induced cardiomyopathy: a genetic predisposition to viral heart disease. Nat. Med. 8, 872-877.
Ypma-Wong et al. (1988). Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166, 265-270.
第一頁 上一頁 下一頁 最後一頁 top
1. 8.石曜堂,”醫療品質評估”,醫院,1978,第11卷,第2期,頁106-109。
2. 17.吳尹中,’’藥師形象與醫藥分業-民眾觀點篇’’,醫望雜誌,1997,第20期,頁85-89。
3. 30.紀炤君、陳本源,’’臨床藥師行多少?處方錯誤原因之探討及預防’’,醫院藥學,1994,第11卷,第3期,頁188-192。
4. 31.洪章榮,”日本東京都醫藥分業考察報告”,藥學雜誌,2002,第18卷,第2期,頁139-158。
5. 39.張豫立、周美惠,’’藥物交互作用’’,臨床醫學,1996,第38卷,第6期,頁403-410。
6. 42.許芳瑾、鄭萬祥,’’台灣省醫藥分業推動之研究’’,藥學雜誌,1999,第15卷,第1期,頁151-156。
7. 49.曾倫崇,”如何提昇台灣目前醫療服務品質”,品質管制月刊,1998,第34卷,第11期,頁27~32。
8. 52.黃淑貞、余萬能,”社區藥局與診所取要病人尊醫囑行為研究”,公共衛生,2001,第27卷,第4期,頁245-260。
9. 55.楊文惠、楊宜璋、黃松共,”醫藥分業後民眾選擇藥局調劑之決策因素研究-以台北市為例”,公共衛生,2001,第27卷,第4期,頁227-244。
10. 65.蕭美玲,”醫藥分業之規劃及展望--當前醫藥分業概況”,藥學雜誌,1991,第7卷,第2期,頁3-6。
11. 68.韓揆,”醫療品質管理及門診服務定性指標”,中華公共衛生雜誌,1994,第13卷,第1期,頁35~51。
12. 69.藍忠孚、熊惠英、胡澤芷、葉佳禧,”台灣地區醫療機構品質管理現況分析”,醫療品質雜誌,2000,第2卷,第1 期,頁5-11。