跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊東昇
研究生(外文):Tung-sheng Yang
論文名稱:金屬成形磨潤模式的有限元素分析
論文名稱(外文):A Finit Element Tribological Analysis in Metal Forming Process
指導教授:羅斯維
指導教授(外文):Sy-wei Lo
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:80
中文關鍵詞:金屬成形磨潤模式有限元素分析微楔形機制連接–成長理論混合潤滑。
外文關鍵詞:Tribology modelMetal formingFinite element analysisMicrowedgeMix film lubrication.Junction-growth theory
相關次數:
  • 被引用被引用:4
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雖然金屬成形的磨潤理論(包括表面峰變形及潤滑理論)已經發展出來了,但其未臻完美,仍有改善空間。在表面峰峰變形方面,基於Lo 與 Tsai(2002)的滑動–壓縮實驗即時觀察工件表面,發現接觸面積比傳統的純粹壓平、工件表面粗糙化及連接–成長理論還大,因此必須尋找新的表面峰變形機制。藉由有限元素分析結果,解釋了當彈性模具滑動時表面有微小彈性變形(微楔形)是接觸面積持續增長的重要因素;且發展了在光滑彈性模具與工件相對滑動距離下之接觸面積成長的增量式預估模式,而模擬結果與Lo and Tsai的實驗結果非常接近。金屬成形過程如引縮、鍛造和擠製等其模具與工件相對滑動距離較大的製程,微楔形機制對接觸面積的影響更是扮演重要角色,而此新的機制將使得接觸面積及摩擦力的預估更精確,且可改善成品的表面品質。
在金屬成形的潤滑方面,目前所發展的理論僅成功的應用在簡單形狀的成形如軸對稱與平面應變的問題上,對於這類問題其將求解潤滑油形成及傳送過程的雷諾方程式,分解為兩個特徵的常微分方程式,再使用數值積分法求解,對於一般的複雜的成形狀況並不適用,使得已發展的潤滑模式的應用受到限制。而目前發展的有限元素分析法求解潤滑問題,將可解決上述的缺失,且可應用到三維、暫態的成形問題上。另外,金屬成形的過程中,模具和工件表面的接觸是影響潤滑的要因,變形的表面粗糙度影響了潤滑油膜的形成及輸送,因此本文除了考慮模具與工件表面峰無接觸的潤滑理論外,且發展了表面峰有接觸的潤滑理論有限元素分析法則。
最後,發展同時考慮表面峰變形及潤滑油行為的磨潤模式,且與實驗值比較。在表面峰變形方面,本章除了考慮傳統的純粹壓平及工件表面粗糙化外,另外也考慮了彈性模具的微楔形機制;而在表面峰間的潤滑理論利用有限元素分析法求解考慮模具微楔形機制的雷諾方程式。
Base on the real-time observation of the workpiece surface in a series of Lo and Tsai’s (2002) compression-sliding experiment, it is found that the asperity contact area is much greater than that evaluated by the existing theorems such as the junction-growth theorem. With the aid of the finite element analysis, it is verified that the tool sliding motion along with the minute elastic deformation of tool surface around the asperity peaks increase the asperity contact area significantly as the sliding motion continues. The concept of the elastic tool deformation indeed provides a good explanation of Lo and Tsai’s observation. An incremental model has also been developed to predict the evolution of contact area with the relative sliding distance between tool and workpiece. The numerical simulation consists well with the experimental results.
In spite of the existence of a well-developed lubrication model, it has only been applied to the simple geometric problems, such as the axisymmetric and plane strain conditions where the formulation of lubricant transport can be decomposed into two characteristic equations. A general approach like the finite element method for the transient, three-dimensional forming process has developed in this paper. The availability of the method was proved by a published problem and an axisymmetric stretch forming process was therefore adopted as a bench mark. It showed that the precision of simulation can be enhanced substantially by the present method.
A refined model for friction in mixed lubricated sliding contact is also developed. In addition to the well known indentation and roughening effects, significant deformation of asperities can be incited by the elastic microwedges on the tool surface. A finite element formulation which incorporates the microwedge effect in the Reynolds equation for lubricant flow is derived. Numerical results showed that the inclusion of microwedge in the analysis provides good agreement with the experimental measurements which can be neither explained nor predicted by the other friction models.
目 錄

中文摘要 -------------------------------------------------------------------------- i
英文摘要 -------------------------------------------------------------------------- ii
誌謝 -------------------------------------------------------------------------- iii
目錄 -------------------------------------------------------------------------- iv
表目錄 -------------------------------------------------------------------------- vi
圖目錄 -------------------------------------------------------------------------- vii
符號說明 -------------------------------------------------------------------------- ix
第一章 緒論 --------------------------------------------------------------------- 1
1.1 研究動機與目的 ----------------------------------------------- 1
1.2 金屬成形磨潤模式 -------------------------------------------- 1
1.3 文獻回顧 --------------------------------------------------------- 4
1.4 本文架構 ----------------------------------------------------------- 10
第二章 表面峰變形行為 ------------------------------------------------------ 16
2.1 純粹壓平理論 --------------------------------------------------- 16
2.2 工件表面粗糙化理論 ----------------------------------------- 17
2.3 滑動接觸下表面峰變形的新機制-彈性模具微楔形理論 17
2.3.1 彈性模具滑動下之表面峰接觸有限元素分析 -- 18
2.3.2 彈性模具變形的理論模式 ---------------------------- 20
2.3.3 工件無應變率下微楔形機制的接觸面積預估模式 22
2.3.4 工件有應變率下之微楔形機制 --------------------- 24
2.4 混合潤滑之表面峰變形理論 --------------------------------- 25
2.5 本章結論 ---------------------------------------------------------- 27
第三章 潤滑油液動潤滑行為 ------------------------------------------------ 45
3.1 雷諾方程式 ------------------------------------------------------- 45
3.2 有限元素分析法求解雷諾方程式 -------------------------- 46
3.3 修正的雷諾方程式 ---------------------------------------------- 49
3.4 驗證潤滑分析的有限元素法則 ------------------------------ 50
3.4.1 初始油膜的決定 ---------------------------------------- 50
3.4.2 求解過程的流程 ----------------------------------------- 51
3.4.3 模擬結果 --------------------------------------------------- 51
3.5 本章結論 ----------------------------------------------------------- 52
第四章 考慮表面峰變形與潤滑油液動潤滑行為之磨潤模式 -------- 61
4.1 求解過程 ----------------------------------------------------------- 61
4.2 與壓縮—滑動實驗結果比較 ---------------------------------- 62
4.3 本章結論 ----------------------------------------------------------- 63
第五章 總結與建議 -------------------------------------------------------------- 71
5-1 總結 ----------------------------------------------------------------- 71
5-2 建議 ----------------------------------------------------------------- 72
參考文獻 ------------------------------------------------------------------------------ 73
自傳 ------------------------------------------------------------------------------------- 80
參 考 文 獻

[1]Wilson, W. R. D., 1979,“Friction and Lubrication in Bulk Metal Forming Process”, J. Appl. Metalworking, Vol. 1, pp.7-19.
[2]Greenwood, J. A. and Williamson, J. B. P., 1966, “Contact of Nominally Flat Surface”, Proc. Roy. Soc., London, A295, pp.300-319.
[3]Greenwood, J. A. and Tripp, J. H., 1967, “The Elastic Contact of Rough Spheres”, ASME J. Appl. Mech., Vol. 34, pp. 153-159.
[4]Greenwood, J. A. and Tripp, J. H., 1970,“The Contact of Two Nominally Flat Rough Surfaces”, Proc. Instn. Mech. Engrs., Vol. 185, pp625-633.
[5]Bush, A. W., Gibson, R. D. and Thomas, T. R., 1975,“The Elastic Contact of a Rough Surface”, WEAR, Vol. 35, pp. 87-111.
[6]Bush, A. W., Gibson, R. D. and Keogh, G. P., 1979, “Strong Anisotropic Rough Surface”, ASME J. Tribol., Vol. 101, No. 1, pp.15-20, 1979.
[7]Chang, W. R., Etsion, I. And Bogy, D. B., 1987, “An Elastic-Plastic Model for the Contact of Rough Surfaces”, ASME J. Tribol., Vol. 109, No. 2, pp. 257-263.
[8]Mccool, J. I., 1987, “Relating Profile Instrument Measurement to the Fuctional Performace of Rough Surface”, ASME J. Tribol., Vol. 109, pp. 257-263.
[9]Halling, J. I., and Nuri, K. A., 1988, “The Elastic-Plastic Contact of Rough Surface and its Relevance in Study of Wear”, Proc. Inst. Mech. Eng. [H], Vol. 202, No. C4, pp. 269-274.
[10]So., H. and Liu, D. C., 1998,“An Elastic-Plastic Asperity Microcontact Model for Rough Surfaces”, ASME J. Tribol., Vol. 120, pp. 82-89.
[11]Horng, J. H., 1998,“An Elliptic Elastic-Plastic Asperity Microcontact Model for Roughness Surfaces”, ASME J. Tribol., Vol. 120, pp. 82-89.
[12]Greenwood, J. A. and Rowe, G. W., 1965, “Deformation of Surface Asperitirs During Bulk Plastic Flow”, J. Appl. Phys., Vol. 36, pp. 667-668.
[13]Wilson, W. R. D. and Sheu, S., 1988,“Real Area of Contact and Boundary Friction ln Metal Forming”, Int. J. Mech. Sci. Vol.30, pp475-489.
[14]Wilson, W. R. D., 1988, “Friction Models for Metal Forming in Boundary Lubrication Regime”, ASME J. Tribol. pp. 13-23.
[15]Howser, B., 1992, “A Micromechanical Model for Boundary Friction and Surface Topography Evolution in Strip Rolling”, Ph. D. dissertation, Mechanical Engineering, Northwestern University.
[16]Sutcliffe, M. P. F., 1988, “Surface Asperity Deformation in Metal Forming Processes”, Int. J. Mech. Sci., Vol. 30, No. 7, pp. 475-489.
[17]Sutcliffe, M. P. F., 1999, “Flattening of Random Rough Surfaces in Metal Forming Process”, ASME J. Tribol., Vol. 121, No. 3, pp. 433-440.
[18]Makinouchi, A. and Ike, H., 1988, “A Finite Element Analysis of Flattening of Surface Asperities by Perfectly Lubricated Rigid Dies in Metal Working Processes”, Wear, Vol. 128, pp. 109-122.
[19]Korzekwa, D. A., Dawson, P. R. and Wilson, W. R. D., 1992, “Surface Asperity Deformation During Sheet Forming”, Int. J. Mech. Sci., Vol. 34, No. 7, pp. 521-539.
[20]Courtney-Pratt, J. S. and Eisner, E., 1957, “The Effect of a Tangential Force on the Contact of Metallic Bodies”, Proc. R. Soc. London, Ser. A, Vol. 238, pp. 529-550.
[21]Rabinowicz., E., 1995, “Friction and Wear of Materials”, 2nd ed., John Wiley & Sons, Inc., p. 47.
[22]Kudo, H., 1965, “A Note on the Role of Microscopical Trappedd Lubricant at the Tool-Work Interface”, Int. J. Mech. Sci., Vol. 7, pp. 383-388.
[23]Johnson, K. L., 1968, “Deformation of a Plastic Wedge by a Rigid Flat Die Under the Action of a Tangential Force”, J. Mech. Phys. Solids, Vol. 16, pp395-402.
[24]Wanheim, T., Bay, N., and Petersen, A. S., 1975, “Ra and the Average Effective Strain of Surface Asperities Deformation in Metal Working Processes”, Wear, Vol. 34, pp.77-84.
[25]Avitzur, B., Huang, C. K., and Zhu, Y. D., 1984, “A Friction Model Based on the Upper-Bound Approach to the Rigid and Sublayer Deformations”, Wear, Vol.95, pp. 59-77.
[26]Komvopoulos, K., Saka, N., and Suh, N. P., 1986, “Plowing Friction in Dry and Lubricated Metal Sliding”, ASME J. Tribol., Vol. 108, pp. 301-313.
[27]Bin, F. and Luo, Z. J., 1988, “Finite Element Simulation of the Friction Mechanism in Plastic-Working Technology”, Wear, Vol. 121, pp. 41-51.
[28]Carter, Jr., W. T., 1994, “A Model for Friction in Metal Forming”, ASME J. Tribol., Vol. 116, No. 1, pp.8-13.
[29]Kayaba, T., and Kato, K., 1978, “Experimental Analysis of Junction Growth with a Junction Model”, Wear, Vol. 51, pp. 105-116.
[30]Lo, S. W. and Tsai, S. D., 2002, “Real-Time Observation of the Evolution of Contact Area Under Boundary Lubrication in Sliding Contact”, ASME J. Tribol., Vol. 124, No. 2, pp. 29-238.
[31]Tong, W., Hector, L. G., Weiland, H., and Wieserman, L. F., 1997, “In-Situ Surface Characterization of a Binary Aluminum Alloy During Tensile Deformation”, Scripta Materialia, pp. 1339-1344.
[32]Lee, W., 1996, “Surface Roughening in Metal Forming Processes”, Ph.D. Thesis, Northwestern University.
[33]Wilson, W. R. D. and Lee, W., 1997, “Mechanics of Surface Roughening in Metal Forming Processes”, Proc. of 1th Int. Conf. on Tribol. in Manufacturing Processes, Gifu, Japan, pp. 71-76.
[34]Saha, P. K. and Wilson, W. R. D., 1994, “Influence of Plastic Strain on Friction in Sheet Metal Forming”, Wear, Vol. 172, pp. 167-173.
[35]Saha, P. K., Shih, H-C., and Wilson, W. R. D., 1996, “Modeling the Influence of Plastic Strain on Boundary Friction in Sheet Metal Forming”, NAMRI Trans. (SME), pp. 173-180.
[36] Lo, S. W. and Horng, T. C., 1999, “Surface Roughening and Contact Behavior in Forming of Aluminum Sheet”, ASME, J. Tribol., Vol. 121, No. 2, pp. 224-233.
[37]Wilson, W. R. D. and Wang, J. J., 1984, “Hydrodynamic Lubrication in Simple Stretch Forming Processes”, ASME J. Tribol., Vol. 106, pp. 70-77.
[38]Wilson, W. R. D., and Hector, L. G., 1991, “Hydrodynamic Lubrication in Axisymmetric Stretch Forming — Part 1: Theoretical Analysis”, ASME J. Tribol., Vol.113, pp. 659-666.
[39]Sun, D. C., Chen, K. K., and Nine, H. D., 1987, ”Hydrodynamic Lubrication in Hemispherical Punch Stretch Forming-Modified Theory and Experimental Validation”, Int. J. Mech. Sci., Vol. 29, pp. 761-776.
[40]Hsu, T. C. and Wison, W. R. D., 1994, “Refined Models for Hydrodynamic Lubrication in Axisymmetric Stretch Forming”, ASME J. Tribol., Vol.116, pp.101-109, 1994.
[41]Wilson, W. R. D., and Hector, L. G., 1992, “Hydrodynamic Lubrication in Axisymmetric Stretch Forming — Part 2: Experimental Investigation”, ASME Journal of Tribology, Vol.114, pp. 150-161.
[42]Patir, N. and Cheng, H. S., 1978,“An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication”, ASME J. Lub. Tech.,Vol 100, pp. 12-17.
[43]Tripp, J. H., 1983, “Surface Roughness Effect in Hydrodynamic Lubrication: The Flow Factor Method”, J. Lub. Tech., Vol. 105, No. 3, pp. 548-565.
[44]Sa, C. Y., Wilson, W. R. D., 1994, “Full Film Lubrication of Strip Rolling”, ASME J. Tribol., Vol. 116, pp. 569-576.
[45]Booker, J. F. and Huebner, K. H., 1972, “Application of finite element method to lubrication: An Engineering approach”, ASME J. Lub. Tech., Vol. 94, pp. 313-323.
[46]Taylor, C and O’Callaghan, J. F., 1972, “A numerical solution of elastohydrodynamic lubrication problem using finite element”, Int. J. Mech. Sci.; Vol. 14, pp. 229-237.
[47]LaBouff, G.A. and Booker, J. F., 1985, “Dynamically loaded journal bearing: A finite element treatment for rigid and elastic surface”, ASME J. Tribol., Vol. 107, pp. 505-515.
[48]Kumar, A., Goenka, P. K., and Booker J. F., 1990, “Model analysis of elastohydrodynamic lubrication: connecting rod application”, ASME J. Tribol., Vol. 112, pp. 524-534.
[49]Kumar, A., and Booker, J. F., 1991, “A finite element cavitation algorithm”, ASME J. Tribol., Vol. 113, pp. 276-286.
[50]Boedo, S. and Booker, J. F. 1997, “Surface roughness and structural mass-conserving elastohydrodynamic lubrication model”, ASME J. Tribol., Vol. 119, pp. 449-455.
[51]Hu, Y. K. and Liu, W. K., 1993, “An ale hydrodynamic lubrication finite element method with application to strip rolling”, Int. J. Num. Met. Eng.; Vol. 36, pp. 855-880.
[52] Wilson, W. R. D., 1990, “Mixed Lubrication in Metal Forming”, Advanced Technology of Plasticity, pp. 1667-1675.
[53] Lo, S. W., 1994, “A Study on Flow Phenomena in Mixed Lubrication Regime by Porous Medium Model”, ASME J. of Tribol., Vol. 116, pp. 640-647.
[54] Wilson, W. R. D. and Marsault, N., 1998, “Partial Hydrodynamic Lubrication with Large Fractional Contact Areas”, ASME J. of Tribology, Vol. 120, pp. 16-20.
[55]Wilson, W. R. D and Chang, D. F., 1996, “Low Speed Mixed Lubrication of Bulk Metal Forming Processes”, ASME J. Tribol., Vol. 118, No. 1, pp. 83-89.
[56] Lin, H. S., Marsault, N., Wilson, W. R. D., 1998, ”A Mixed Lubrication Model for Cold Strip Rolling, Part 1: Theoretical”, STLE Tribol. Trans., Vol. 41, pp. 317-326.
[57]Dohda, K. and Wang Z., 1995, “Investigation into Relationship Between Friction Behavior and Plastic Deformation Using a Newly Devised Rolling-Type Tribometer”, ASME J. Tribol., Vol. 117, pp. 529-533.
[58]Dohda, K. and Wang Z., 1998, “Effects of Average Lubricant Velocity and Sliding Velocity on Friction Behavior in Mild Steel Sheet Forming”, ASME J. Tribol., Vol. 120, No. 4, pp. 724-728.
[59]Lo, S. W., Zhou, B. Q., Fang, C. F., and Lu, Y. S., 2003, “In Situ Observation of Liquid Lubricated Sliding Contact”, ASME J. Tribol., accepted.
[60] Zhou, B. Q., 2002, “In Situ Observation of Liquid Lubrication Phenomena in Metal Forming”, Ma.D. Thesis, National Yunlin Univ. of Sci. and Tech., Taiwan.
[61] Wilson, W.R.D. ,Hsu, T.C. and Huang, X.B., 1995,“A Realistic Friction Model for Computer Simulation of Sheet Metal Forming Process”, ASME J. Eng. Indu.,Vol.117, pp202-207.
[62] Hsu, T. C. and Lee, C. H., 1997, “ Realistic Friction Modeling for Simple Upsetting”, STLE Tribol. Trans., Vol. 40, pp. 367-373.
[63] Hsu, T. C. and Lee, C. H., 1997, “Refined Friction Modeling for Simple Upseeting”, ASME J. Manu. Sci. and Eng., Vol. 119, pp. 563-570.
[64] Williams, J. A., 1996, “Engineering Tribology”, Oxford University Press Inc., pp. 85-88.
[65] Lo, S. W. and Yang, T. S., 2001, ”Determining the Pressure Dependence of Lubricant Viscosity by Roughness Measurement of Rolled Strip”, STLE Tribol. Trans., Vol. 44, pp.118-124.
[66] Schmid, S. R., Wilson, W. R. D., Liu, J., 2002, “A tribology module for use with the finite element method”, JSME/ASME Int. Conf. Materials and Processing, pp. 250-255, Hawaii, USA .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 朱景鵬,「歐洲議會主義之理論與實際」,〔美歐月刊〕第11卷第7,(民85年7月),頁4-28。
2. 朱景鵬,「歐洲聯盟與中共雙邊互動經驗之探討-兼論歐盟之對外關係」,〔遠景季刊〕,第3卷第2期(民國91年4月),頁43-87。
3. 朱景鵬,「歐洲聯盟經濟暨貨幣聯盟及其與政治統合之關聯性」,〔問題與研究〕,第33卷第11期(民83年11月),頁21-45。
4. 朱景鵬,「德國聯邦參眾兩院參與歐洲統合策略之研析」,〔戰略與國際研究〕第1卷第4期( 民88年10月),頁93-138。
5. 朱景鵬,「區域主義、區域整合與兩岸整合問題之探討」,〔中國大陸研究〕,第42卷第8期(民88年8月),頁71-94。
6. 朱景鵬,「英國的歐洲統合政策」,〔問題與研究〕,第34卷第10期(民國84年10月),頁40-62。
7. 王文娟,「區域性貿易協定之發展趨勢及最新動態」,〔經濟情勢暨評論〕,第8卷第3期(民91年12月),頁48-66。
8. 宋興洲,「國際合作理論與亞太區域經濟」,〔問題與研究〕,第36卷第3期(民國86年3月),
9. 林文斌,「國際典則:理論與經驗的對話—以國際銀行監管中的巴塞爾協議及協定為例」,〔問題與研究〕,第41卷第6期(民國91年11、12月), 頁25-60。
10. 林碧炤,「改革開放聲中的中共外交」,〔光復大陸〕,第263期(民國77年11月),頁32-37。
11. 林碧炤,「國際衝突的研究途徑與處理方法」,〔問題與研究〕,第35卷第3期(民國85年3月),
12. 金榮勇,「柯林頓政府之東南亞政策」,〔美國月刊〕,第8卷第5期(民國82年5月),頁69-81。
13. 金榮勇,「一九九○年代日本的亞太政策」〔問題與研究〕,第32卷第6期(民國82年6月),頁30-39。
14. 金榮勇,「東南亞金融風暴的起因、影響與展望」,〔問題與研究〕第37卷第1期(民國87年1月),頁1-14。
15. 金榮勇,「東亞金融風暴對東協組織的影響」,〔問題與研究〕第38卷第2期(民國88年2月),頁55-67。