跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊愷祥
研究生(外文):Kai-shing Yang
論文名稱:壓電無閥式微幫浦之製造與量測分析
論文名稱(外文):The Fabrication and Analysis of Piezoelectric Valve-less Micropump
指導教授:陳英洋
指導教授(外文):Ing Youn Chen
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:92
語文別:中文
論文頁數:127
中文關鍵詞:無閥式微機電.微幫浦
外文關鍵詞:Valve-lessMicropumpMEMS
相關次數:
  • 被引用被引用:12
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
在此研究中首先製作並分析噴嘴及擴散器之性能,結果顯示擴散器/噴嘴系統之壓降損失係數隨雷諾數增加而減少,壓降損失係數比隨雷諾數增加而增加。擴散器/噴嘴系統之壓降損失係數隨角度增加而減少,壓降損失係數比隨角度增加而增加。長度對噴嘴/擴散器之壓降損失係數及壓降損失係數比影響相對較小。且會有最佳之深度設計使得噴嘴/擴散器具有最低壓降損失係數及最高之壓降損失係數比。而所發展之預測式可正確預測不同角度噴嘴及5度之擴散器之壓降損失,但卻低估20度擴散器壓降損失。原因在於大角度擴散器回流現象之產生,再針對2D及3D擴散器以CFD軟體進行模擬,並模擬出回流現象之產生,並在2D模擬中發現不對稱流場之現象,但在3D模擬中不對稱流場會有延遲發生之現象,原因在於上下管壁對流場之影響。
在3D微幫浦模擬中,進行不同頻率、開口角度及振幅高度對微幫浦性能之影響之模擬,結果顯示不同角度在不同頻率下,角度越大流量越大,在相同角度下頻率越大流量也越大。不同角度在不同振幅下,一般流量會隨振幅增加而增加,但在某些振幅下流量會有突降的現象產生,主要原因在於噴嘴端出口流速過快造成擴散器端阻塞的現象。本研究並成功製作16mm*22mm*3mm擴散器角度為10度之微幫浦,在運作200Hz電壓為130V時具有最高驅動流量393.88μl/min。
In this study, an analysis of the performance of micro nozzle/diffusers is performed and fabrication of the micro nozzle/diffuser is conducted and tested. It is found that the ratio of the loss coefficient of nozzle and diffuser increases with the Reynolds number and with the opening angle. At a given Reynolds number, the pressure loss coefficient for nozzle is higher than that of the diffuser due to considerable difference in the momentum change. At a fixed volumetric flowrate, a “minimum” phenomenon of the pressure loss coefficient vs. nozzle/diffuser depth is encountered. This is related to the interactions of velocity change and friction factor. Good agreements of the measured data with the predicted results are found in this study except at a diffuser having an opening angle of 20�a. This is because of the presence of flow separation. The departure of this case to the prediction is due to the separation phenomenon in a larger angle of the diffuser. Hence a more complicated 2-D and 3-D model is adopted to verify this flow separation inside the diffuser. For the simulation of 2-D case, asymmetry flow field is seen for low Reynolds number region whereas this phenomenon is not seen under 3-D simulation due to the confinement of the side wall.
This study numerically investigated the performance of micro nozzle/diffuser pump subject to the influence of frequency, opening angle, and amplitude. It is found that the net flowrate of a micro-pump increased with pumping frequency and opening angle. However, a level off phenomenon of the net flowrate vs. amplitude is seen at an amplitude nearby 150~200 �慆 and at an opening angle above 10 degree. This phenomenon is associated with two factors that compensate with each other. One is the free jet flow from the outlet that overturns and blocks the flow from the inlet. The other is the reduction of the strength of jet flow at a larger amplitude owing to effective increase of cross sectional area. The valve-less pump base diffuser has been fabricated and tested in this study. The pump dimensions are 16mm*22mm*2.5mm. The pump chamber is 10 mm. The diffuser/nozzle element neck dimensions are 300μm*500μm and opening angle is 10o. The measured maximum pump flow rate is 393.88μl/min for water at frequency of 200Hz.
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
符號說明 xv
第一章、 研究動機及目的 1
第二章、 文獻探討 3
2.1 微致動器簡介 3
2.2 微閥門簡介 8
2.3 微幫浦之分類及作動原理說明 13
2.4. 壓電無閥式微幫浦 24
2.4.1 無閥式微幫浦工作原理 24
2.4.2 無閥式微幫浦製造技術 25
2.4.3 無閥式微幫浦原理分析 31
2.5 壓電材料 42
2.5.1 壓電性原理分析 42
2.5.2 壓電材料之方向表示法 44
2.5.3 壓電材料重要參數 44
2.5.4 壓電方程式 47
2.6 無閥式微幫浦CFD模擬 48
2.6.1 CFD ACE+ 2002之理論基礎 50
第三章、 研究方法及步驟 51
3.1 微噴嘴/擴散器實驗簡介 51
3.2 微噴嘴/擴散器實驗系統 51
3.2.1測試段 51
3.2.2水循環系統 51
3.3實驗儀器 52
3.3.1 幫浦 53
3.3.2 溫度量測 53
3.3.3 壓力量測 53
3.3.4 差壓量測 53
3.3.5 水流量量測 53
3.3.6 資料擷取系統 54
3-4 工作流體的熱力物理性質 54
3-5 實驗過程 54
3-5-1 試片安裝 54
3-5-2 實驗操作步驟 54
3.6 試片製作 54
3.6.1預處理(Pretreat) 55
3.6.2塗佈(Coating) 57
3.6.3軟烤(Soft bake) 57
3.6.4曝光(Expose) 57
3.6.5曝後烤(Post Expose Bake) 57
3.6.6顯影(Develop) 57
3.6.7硬烤(Hard bake) 57
3.6.8掃描式電子顯微鏡(SEM) 58
3.7微幫浦的製作設計 59
3.7.1上板 59
3.7.2壓電片 59
3.7.3高分子薄膜 59
3.7.4微幫浦主結構 60
3.7.5 結構與接管的介面板 61
3.7.6下板含管路接頭 61
3.7.7 微幫浦 61
3.8 微幫浦驅動及量測系統 62
3.8.1 訊號產生器 62
3.8.2 功率放大器 62
3.8.3 示波器 63
3.8.4 電阻式溫度檢測器 63
3.8.5 微量天平 63
3.8.6實驗步驟 63
3.9 網格之建立 64
3.9.1 2D擴散器模擬網格之建立 64
3.9.2 3D擴散器模擬網格之建立 65
3.9.3 3D微幫浦之模擬網格之建立 66
3.9.4 不同幾何形狀3D微幫浦之模擬網格之建立 68
3.9.5初始條件跟邊界條件 69
3.9.6 網格格點數之選定 75
第四章、 結果與討論 77
4.1 微擴散器/噴嘴壓降係數之實驗與分析 77
4.1.1 微擴散器/噴嘴壓降係數之分析模式 77
4.1.2 雷諾數對壓降係數及壓降損失係數的影響 79
4.1.3 角度對壓降係數及壓降損失係數的影響 80
4.1.4 長度對壓降係數及壓降損失係數的影響 81
4.1.5 深度對壓降係數及壓降損失係數的影響 82
4.1.6 微噴嘴/擴散器之實驗與理論之壓降係數之比較 83
4.1.7 回流(back flow)的形成原因探討 86
4.1.8 擴散器之2d數值模擬 88
4.1.9擴散器之3d數值模擬 91
4.2 微幫浦之實驗與分析 96
4.2.1微幫浦之實驗分析 96
4.2.2微幫浦之數值模擬 97

第五章、 結論 118

第六章、 參考文獻 120

第七章、 論文著作 125
1.Bustgens B., Bacher W., Menz W. and Schomburg W. K., 1994, Micropump manufactured by thermoplastic molding, Proc. IEEE-MEMS workshop, 18-21
2.Richer A. and Sandmaier H., 1991, Electrohydrodymanic pumping and flow measurement, Proc. IEEE-MEMS workshop, 97-104
3.Bart S. F., Tavrow L. S., M. Mehregany, and J. H. Lang, 1990, Microfabricated Electrohydrodynamic Pumps, Sensors and Actuators, A21-23, 193-197
4.Fuhr G., Hagedorn R., Muller T., Benecke W., and Wagner B., 1992, Pumping of Water Solution in micrifabricated electrohydrodynamic systems, IEEE-MEMS Workshop, 25-29
5.Stemme E. and Stemme G., 1993, Nozzle/Diffuser pump, Swedish Patent Applic. No. 9 300 604-7
6.Rapp R., Schomburg W. K., Mass D., Schulz J. and Stark W., 1994, LIGA Micropump for gases and liquids, sensors and Actuator, A40, 57-61
7.Lammerink TSJ., Elwenspoek M. and Fluitman JHJ., 1993, Integrated micro-liquid dosing system, Proc. IEEE-MEMS Workshop, 254-259
8.Yang Y., Zhou Z., Ye X. and Jiang X., 1996, A bimetallic thermally actuated micropump, Microelectromechanical system (MEMS), 59, 351-354
9.Benard W. L., Kahn H., Heuer A. H. and Huff M. A., 1998, Thin-Film Shape-Memory alloy actuated micropumps, Journal of Microelectromechanical systems, 7, 245-251
10.Moroney R. M., White R. M., and Howe R. T., 1991, A Ultrasonic induced microtransport, Prod. IEEE-MEMS Workshop, 277-282
11.Miyazaki S., Kawai T., and Araragi M., 1991, A piezoelectric pump driven by a flexural progressive wave, Proc. IEEE-MEMS Workshop, 283-288
12.Terry S. C., Jerman J. H. and Angell J. B., 1979, A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Trans. Electron Device, 26, 1880-1886
13.Nakagawa S., Shoji S. and Esashi M., 1990, Microchemical analyzing system integrated on a silicon wafer, Proc. IEEE-MEMS workshop, 89-94
14.Shoji S., Esashi M. and Matsuo M., 1988, Prototype miniature blood gas analyzer fabricated on a silicon wafer, Sensors and Actuators, 14, 101-107.
15.Ohnstein T., Fukiura T., Ridley J. R. and Bonne U., 1990, Micromachined silicon microvalve, Proc. IEEE-MEMS Workshop, 95-98.
16.Zdeblick M. J. and Angell J. B., 1987, A microminiature electric-to-fluidic valve, Technical Digest of Transducers, 87, 827-829.
17.Jerman H., 1990, Electrically-activated micromachined diaphragm valves technical digest, IEEE Sensors & Actuators Workshop, 65-69,
18.Van Lintel H. T. V., Van de Pol F. C. M. and Bouwstra A., 1988, Piezoelectric micropump based on micromachining of silicon Sensors Actuators, 15, 153-167.
19.Tiren J., Tenerz L. and Hok B., 1989, A batch-fabricated non-reverse valve with cantilever beam manufactured by micromachining of silicon, Sensors Actuators, 18, 389-396.
20.Esashi M., Shoji S. and Nakano A., 1989, Normally closed microvalve and micropump fabricated on a silicon wafer, Sensors Actuators, 20, 163-167.
21.Smith L. and Hok B., 1991, A silicon self-aligned non-reverse valve, Technical Digest of Transducers 91, 1049-1051.
22.Zengerle R., Richter A., and Sandmaier H., 1992, A Micromembrane pump with electrostatic actuation, IEEE 5th Int. Workshop on MEMS-MEMS’92, 31-36
23.Shoji S., Nakagawa S. and Esashi M., 1990, Micropump and sample-injector for integrated chemical analyzing systems Sensors Actuators, A21-23, 189-192.
24.Stemme E. and Stemme G., 1993, A novel piezoelectric valve-less fluid pump, Technical Digest of Transducers 93, 110-113.
25.Rapp R., Schomburg W. K., Mass D., Schulz J. and Stark W., 1994, LIGA micropump for gases and liquids Sensors Actuators, A40, 57-61.
26.Lammerink T. S. J., Elwenspoek M. and Fluitman J. H. J., 1993, Integrated micro-liquid dosing system, Proc. IEEE-MEMS Workshop, 254-259.
27.Hattori S., ukuda T. F,. Kishi R and Ichijo H., 1992, Structure and mechanism of two types of micro-pump using polymer gel, Micro Electro Mechanical System ’92, 110-115.
28.Mizoguchi H., Ando M. and Mizuno T., 1992, Design and fabrication of light driven micropump, Micro Electro Mechanical System ’92, 31-36.
29.Ahn C. H., and Allen M. G., 1995, Fluid micropumps based on rotary magnetic actuators, IEEE 8th Int. Workshop on MEMS (MEMS’95), 408-412.
30.Khoo M. and Liu C., 2000, A novel micromachined magnetic membrane microfluid pump, Proceeding of the 22nd Annual EMBS International Conference, July, 2394-2397.
31.Ahn S. and Kim Y., 1998, Fabrication and experiment of a lanner micro ion drag pump, Sensors and Actuators, A70, 1-5.
32.Benard W. L., Kahn H.,. Heuer A. H and Huff M. A., 1998, Thin-film shape-memory alloy actuated micropumps, Journal of Microelectromechanical Systems, 7, 245-251
33.Hatch A., Kamholz A.E., Holman G., Yager P. and Bohringer K,. 2001, A ferrofluidic micropump, Journal of Microelectromechanical Systems, 10, 215-221
34.Dewa A. S., Deng K., Ritter D. C. and Bonham C., 1997, Development of LIGA-Fabricated, Self-Priming, In-Line Gear pumps, International conference on Solid-State Sensors and Actuator, 757-760
35.Pol F. C. M. van de, A pump based on micro-engineering techniques, Thesis, University of Twente, the Netherlands, 1989.
36.Richter W. and Lang H. L. Offereins, 1992, Ventillose Mikropumpen(Valve-less micropump), German Patent DE 4223019.
37.Stemme E. and Stemme G., 1993, A novel piezoelectric valve-less fluid pumps, 7th International conference on Solid-State Sensors and Actuator, 110-113
38.Stemme E. and Stemme G., 1993, A valveless diffuser/nozzle-based fluid pumps, Sensors and Actuator, A39, 159-167
39.Gerlach T, 1994., A simple micropump employing dynamic passive valves made in silicon, Proc. Micro system Technologies ’94, 1025-1034
40.Gerlach T., Wurmus H., 1995, working principle and performance of the dynamic micropump, Proc. IEEE workshop on Micro Electro Mechanical System MEMS’95, 221-226
41.Gerlach T., Wurmus H., 1995, Working principle and performance of the dynamic micropump, Sensors and Actuator, A50, 135-140
42.Olssen A., Enoksson P., Stemme G, 1996, An improved valve-less pump fabricated using deep reactive ion etching, Proc. MEMS ’96 workshop, 479-484
43.Olssen A., Enoksson P., Stemme G., Stemme E, 1997, Micromachined Flat-Walled Valveless Diffuser Pumps, Journal of Microelectromechanical System, 9, 161-166
44.Olssen A., Enoksson P., Stemme G., Stemme E., 1996, A valve-less planar pump isotropically etched in silicon, J. Micromech, 6, 87-91
45.Olsson A., Stemme G., Stemme E., 1997, The First Valve-Less Diffuser Gas Pump, Proc. 10th Int. Workshop Micro Electro Mechanical System (MEMS’97), 108-113
46.Olsson A., Larsson O., Holm J., Lundbladh L., Ohman O., Stemme G, 1997, Valve-less diffuser micropump fabricated using thermoplastic replication, Micro Electro Mechanical Systems. Proc. IEEE MENS ’97, 305–310
47.Olsson A., Larsson O., Holm J., Lundbladh L., Ohman O., 1998, Valve-less diffuser micropump fabricated using thermoplastic replication, Sensor and Actuator, A64, pp.63-68
48.Wijngaart V. D., Andersson W., Enoksson H., Noren P., Stemme K. G, 2000, The first self-priming and bi-directional valve-less diffuser micropump for both liquid and gas, Micro Electro Mechanical Systems. MEMS 2000, 674 –679
49.Olssen A., Stemme G., Stemme E., 1995, A valve-less planar fluid pump with two pump chambers, Sensor and Actuator A 46-47, 549-556
50.Olssen A., Stemme G., Stemme E., 1996,Micromachined Diffuser/Nozzle Elements for Valve-Less Pumps, Micro Electro Mechanical Systems, 1996, MEMS ''96, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE, The Ninth Annual International Workshop on, 378 –383
51.Olssen A., Stemme G., Stemme E., 2000, Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps, Sensor and Actuator A 84, 165-175
52.Jiang X. N., Zhou Z. Y., Li Y., Yang Y., Huang X. Y., Lin C. Y., 1997, Experiments and Analysis for Micro-Nozzle/Diffuser Flow and Micro Valveless Pumps, Proc. Transducers ’97, 1997 International conference on Solid-State Sensors and Actuator, Chicago, June 16 16-19, 369-372
53.Jiang X. N., Zhou Z. Y., Li Y., Yang Y., Huang X. Y., Lin C. Y., 1998, Micronozzle/Diffuser Flow and Its Application in Micro Valveless Pumps, Sensors and Actuator A 70, 81-87
54.Idelchik I. E., Handbook of Hydraulic resistance, 2nd ed. New York: Harper & Row
55.Artyushkina G. K., 1973, “On the hydraulic resistance during laminar fluid flow in conical diffuser”, Tr. LPI, No. 333, 104-106
56.Levin L., and Clermont F., 1970, Etude des pertes de charge singulieres dans les convergents coniques, Le Genie Civil, Vol. 147 No. 10, 11-20.
57.Ullmann A., 1998, The piezoelectric valve-less pump-performance enhancement analysis, Sensors and actuators A69, 97-105
58.Gerlach T., 1998, Microdiffusers as Dynamic Passive Valves for Micropump Applications, Sensor and Actuators A. 69, 181-191
59.Olsson A., Stemme G., Stemme E., 1999, A Numerical Design Study of the Valveless Diffuser Pump Using a Lumped-Mass Model, J. Micromech. Microeng 9, 34-44
60.Lin C. H., 2002, Microfluidic system integrated with optical waveguides for Bio-analytical applications, Thesis, Institute of Biomedical Engineering National Chung Kung University, Taiwan
61.White F. M., 1986, Fluid Mechanics, McGraw-Hill, New York, 334-336, 345-351
62.Hartnett J. P., Kostic M, 1989, Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts, Adv. Heat Transfer 19, 247-356
63.Durst F., Melling A. and Whitelaw J.H., 1974, Low Reynolds Number Flow Over a Plane Symmetric Sudden Expansion, Journal of Fluid Mechanics, vol. 64, 111-128.
64.Cherdron W., Durst F. and Whitelaw J.H., 1978, Asymmetric Flow and Instabilities in Symmetric Ducts With Sudden Expansions, Journal of Fluid Mechanics, vol. 84, 13-31.
65.Tsui Y.Y.and Wang C.K., 1995, Calculation of Laminar Separated Flow in Symmetric Two-dimensional Diffuser, Journal of Fluids Engineering, vol. 117, pp. 612-616.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. ﹝11﹞ 初炳瑞,1999,如何實施有效教育訓練,人力培訓專刊,頁2~6,5月。
2. ﹝10﹞ 李澄如,1997,美國安泰人壽保險公司台灣分公司的繼續專業教育,社教雙月刊,頁24~27,12月。
3. ﹝9﹞ 李淑娟,1992,訓練移轉之研究,人事月刊,頁20~31,5月。
4. ﹝6﹞ 石銳,1999,企業教育訓練所遭遇瓶頸及解決之道,金屬工業,第33期,頁110~115。
5. ﹝5﹞ 石銳,1999,企業訓練成功關鍵-訓練移轉,就業與訓練,頁22~23。
6. ﹝4﹞ 田靜婷,1994,如何確保訓練的成效(下),人事月刊,第五期,頁4~11。
7. ﹝3﹞ 田靜婷,1994,如何確保訓練的成效(上),人事月刊,第四期,頁26~31。
8. ﹝2﹞ 王麗卿,1993,沒有訓練哪來人才?企業推行教育訓練現況,管理雜誌,第223期,頁96~99。
9. ﹝1﹞ 方昭明,2000,淺談員工教育訓練,就業與訓練,頁46~50,5月。
10. ﹝12﹞ 施郁芬、陳如琇,1996,情境脈絡與學習遷移,教學科技與媒體,第29期,頁23~31。
11. ﹝13﹞ 洪榮昭,1996,教育訓練單位的自我評估,就業與訓練,頁11~13,5月。
12. ﹝14﹞ 孫本初、蔡秀涓合著,1996,我國中高級公務人員訓練移轉之研究-以政大公企中心公務人員訓練班為個案,國立政治大學學報,第72期,頁213~262。
13. ﹝15﹞ 張火燦、田靜婷,1994,訓練遷移相關因素之研究,人力資源學報,頁63~81,12月。
14. ﹝17﹞ 張惠雅,2000,從成人心理與學習看企業教育訓練,就業與訓練,第18期,頁53~58。
15. ﹝18﹞ 梁朝雲,1995,情境因素對企業教育訓練人員決策過程的影響,視聽教育學報,第1期,頁153~169。