跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃川桂
研究生(外文):Chuan-Kuei Huang
論文名稱:混沌安全通訊系統之設計及製作
論文名稱(外文):Implementation and Design of Chaotic Secure Communications
指導教授:蔡樹川
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:124
中文關鍵詞:混沌系統混沌同步混沌安全通訊MRACVS-MRAC雙向安全通訊系統Chua系統non系統類比混沌電路離散混沌電路
外文關鍵詞:Discrete-time chaotic systems.Continuous-time chaotic systemsnon systemChaotic systemMRACChaotic secure communicationVS-MRACChua systemChaotic synchronizationBidirectional secure communication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分別針對類比混沌系統及離散混沌系統之混沌同步、安全通訊等問題進行設計及製作研究。
在類比混沌系統之研究中,首先提出一全新架構的三階混沌電路。本電路具有可調式非線性轉折點,可增加混沌系統的動態性能;並以實作電路來實現混沌安全通訊。同時,系統參數之不確定性或雜訊干擾,將影響系統之同步性能。本論文分別利用MRAC及VS-MRAC的控制方法來達成混沌傳輸端與接收端間的適應同步。另外,本論文亦提出雙向安全通訊系統;由頻譜技術分析之結果可證明,本雙向通訊系統具有theoretical security 之安全通訊效果。
在離散混沌系統之研究中,本論文分別從可控制及可觀察之架構來探討混沌同步的問題,亦針對安全通訊系統之控制器進行研究及設計,並以實作電路來實現所提出的混沌安全通訊系統。
The chaotic characteristic, the chaotic synchronization, and the secure communi- cation for the continuous-time and discrete-time chaotic systems are studied in this dissertation. To guarantee that the message can be transmitted and perfect recovered, the feedback controller gains are designed to achieve the synchronization between the transmitter and the receiver for the proposed chaotic systems. On the other hand, some basic electronic elements are used to implement the proposed secure communication chaotic systems.
There are two subjects that are discussed in this dissertation. The continuous-time chaotic systems are the first part. We firstly propose a novel 3-order autonomous circuit to construct a chaotic circuit with double scroll characteristic. We use basic components, elements and operational amplifiers to make the novel chaotic systems. At the same time, the secure communication hyperchaotic system based on the proposed chaotic circuit is setup in this dissertation. Furthermore, the schemes of MRAC and VS-MRAC are used to overcome the noise effect and parameter uncertainty for the chaotic communication systems. On the other hand, we are also proposed a scheme of the bidirectional secure communication chaotic system. From the viewpoint of communication security, the bidirectional communication system can provide a so-called “theoretical security”. The theoretical security can be verified by the technique of frequency spectrum.
At the second part, the discrete-time chaotic systems are also discussed. The synchronization between two discrete-time chaotic systems containing the observable scheme and controllable scheme are studied. To achieve the synchronization between the chaotic master and the chaotic slave, the method of pole-assignment is applied to design a controller. The controller can guarantee that the master-slave pair is asymptotic synchronization or dead-beat synchronization by choosing the suitable controller gains respectively. Furthermore, we present a secure communication hyperchaotic system based on the proposed schemes of the chaotic synchronization. To practically achieve the system performances, some electronic elements are used to implement the proposed scheme of secure communication.
Table of Contents
Abstract……………………………………………………………………….…………ii
List of Figures…………………………………………………….…………..…………vi

Chapter 1 Introduction……………………………………………………...……………1
1.1 What is chaos….………………….…………….……………..……………..1
1.2 Related literature survey…….……………………………………….………2
1.3 Motivation and contributions………………………………………….……..7
1.4 Organization of the dissertation…….……………………………….……….9
Chapter 2 Design and Implementation of Secure Communication for Continuous-time
Chaotic Systems……….…….………………………………….……………10
2.1 Introduction………………….…….….……....……………..…………..…..10
2.2 Three-order autonomous chaotic circuit…….………………………...……11
2.3 Synchronization of the chaotic secure communication systems…………...16
2.4 Implementation of chaotic secure communication systems……...…..…….23
2.5 Conclusion……………………………………………….…………………32
Chapter 3 Robust Adaptive Synchronization for a Class of Continuous-time Chaotic Systems…………………………………………………………………….33
3.1 Introduction………………….…….….……...…….………...……………..33
3.2 Synchronization of the MRC for chaotic systems………….………………34
3.3 Adaptive synchronization of the MRAC for chaotic systems……...………45
3.4 Robust synchronization by using VS-MRAC for chaotic systems…………57
3.5 Conclusion………………………….………………………………………65
Chapter 4 Synchronization of Chua Chaotic Circuits with Application to the Bidirec- tional Secure Communication Systems…………….……………….………66
4.1 Introduction………………...…….….……...……………..……..….……..66
4.2 Problem statement………………………………………………….………67
4.3 Synchronization of the hyperchaotic systems……………………………...69
4.4 Simulation results…………………………………………….…..….…….77
4.5 Conclusion…………………………………………………………………88
Chapter 5 Design and Implementation of Discrete-time Chaotic Secure Communic- ations……………..………………………………………………..……….89
5.1 Introduction………………….…….….……...……………..….…………..89
5.2 Synchronization of discrete-time chaotic systems……………….……..…90
5.3 Secure communication for discrete-time chaotic systems……….……..…100
5.4 Implementation of chaotic secure communication systems………………109
5.5 Conclusion..……………………………………………………….………116
Chapter 6 Conclusion and Future Researches……………………………….………..117
6.1 Conclusion………………….…….…..……...……………..….…………..117
6.2 Future researches …………………….………..………………….………119

References………………………………………………………………….…………..120
References

[1] T. Matsumoto, L. O. Chua and M. Komuro, 1985, “The double scroll,” IEEE Trans. on Circuits and Systems, vol. 32, pp. 798-819.
[2] P. Bartissol and L. O. Chua, 1988, “The double hook,” IEEE Trans. on Circuits and Systems, vol. 35, pp. 1512-1522.
[3] L. O. Chua and G. N. Lin, 1990, “Canonical realization of Chua’s circuit family,” IEEE Trans. on Circuits and Systems, vol. 37, pp. 885-902.
[4] M. J. Ogorzalek, 1987, “Chaotic regions from double scroll,” IEEE Trans. on Circuits and Systems, vol. 34, pp. 201-203.
[5] A. S. Elwakil, S. Özoğuz and M. P. Kennedy, 2002, “Creation of a complex butterfly attractor using a novel Lorenz-type system,” IEEE Trans. on Circuits and Systems-I, vol. 49, pp. 527-530.
[6] H. C. Chou, 2003, “Analytical two-segment method to predict the chaotic phenomenon in nonlinear system,” Automatic Control Conference, Taiwan, pp. 1840-1845.
[7] L. M. Pecora and T. L. Carrol, 1990, “Synchronization in chaotic system”, Physical Review Letter, vol. 64, pp. 821-824.
[8] S. S. Yang and C. K. Duan, 1998, “Generalized synchronization in chaotic systems,” Chaos, Solitons and Fractals, vol. 9, pp. 1703-1707.
[9] J. R. Terry and G. D. VanWiggeren, 2001, “Chaotic communication using generalized synchronization,” Chaos, Solitons and Fractals, vol. 12, pp. 145-152.
[10] A. Y. Pogromsky, 1998, “Passivity based design of synchronizing systems,” Int. J. of Bifurcation and Chaos, vol. 8, pp. 295-319.
[11] G. Xiaofeng and C. H. Lai, 2000, “On the synchronization of different chaotic oscillators,” Chaos, Solitons and Fractals, vol. 11, pp. 1231-1235.
[12] C. C. Wang and J. P. Su, 2003, “A novel variable structure control scheme for chaotic synchronization,” Chaos, Solitons and Fractals, vol. 18, pp. 275-287.
[13] X. Tan, J. Zhang and Y. Yang, 2003, “Synchronizing chaotic systems using backstepping design,” Chaos, Solitons and Fractals, vol. 16, pp. 37-45.
[14] C. Wang and S. S. Ge, 2001, “Adaptive synchronization of uncertain chaotic systems via backstepping design,” Chaos, Solitons and Fractals, vol. 12, pp. 1199- 1206.
[15] H. Nijmeijer and I. M. Y. Mareels, 1997, “An observer looks at synchronization,” IEEE Trans. on Circuits and Systems-I, vol. 44, pp. 882-890.
[16] F. Liu, Y. Ren, X. Shan and Z. Qiu, 2002, “A linear feedback synchronization theorem for a class of chaotic systems,” Chaos, Solitons and Fractals, vol. 13, pp. 723-730.
[17] Ö. Morgül and E. Solak, 1997, “On the synchronization of chaotic systems by using state observers,” Int. J. of Bifurcation and Chaos, vol. 7, pp. 1307-1322.
[18] G. Grassi and S. Mascolo, 1997, “Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal,” IEEE Trans. on Circuits and Systems-I, vol. 44, pp. 1011-1014.
[19] M. Feki and B. Robert, 2003, “Observer-based chaotic synchronization in the presence of unknown inputs,” Chaos, Solitons and Fractals, vol. 15, pp. 831-840.
[20] J. K. John and R. E. Amritkar, 1994, “Synchronization by feedback and adaptive control,” Int. J. of Bifurcation and Chaos, vol. 4, pp. 1687-1695.
[21] J. Wang and X. Wang, 1998, “Parametric adaptive control in nonlinear dynamical systems,” Int. J. of Bifurcation and Chaos, vol. 8, pp. 2215-2223.
[22] M. D. Bernardo, 1996, “An adaptive approach to the control and synchronization of continuous-time chaotic systems,” Int. J. of Bifurcation and Chaos, vol. 6, pp. 557-568.
[23] A. K. Kozlov, V. D. Shalfeev and L. O. Chua, 1996, “Exact synchronization of mismatched chaotic systems,” Int. J. of Bifurcation and Chaos, vol. 6, pp. 569-580.
[24] K. Y. Lian, P. Liu, T. S. Chiang and C. S. Chiu, 2002, “Adaptive synchronization design for chaotic systems via a scalar driving signal,” IEEE Trans. on Circuits and Systems-I, vol. 49, pp. 17-27.
[25] A. L. Fradkov and A. Y. Pogromsky, 1996, “Speed gradient control of chaotic continuous-time systems,” IEEE Trans. on Circuits and Systems-I, vol. 43, pp. 907-913.
[26] A. L. Fradkov and A. Y. Markov, 1997, “Adaptive synchronization of chaotic systems based on speed gradient method and passification,” IEEE Trans. on Circuits and Systems-I, vol. 44, pp. 905-912.
[27] K. M. Cuomo, A. V. Oppenheim and S. H. Strogatz, 1993, “Synchronization of Lorenz-based chaotic circuits with application to communication,” IEEE Trans. on Circuits and Systems-II, vol. 40, pp. 626-633.
[28] H. Dedieu, M. Kennedy and M. Hasler, 1993, “Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua''s circuits,” IEEE Trans. on Circuits and Systems-II, vol. 40, pp. 634-642.
[29] T. Yang and L. O. Chua, 1996, “Secure communication via chaotic parameter modulation,” IEEE Trans. on Circuits and Systems-I, vol. 43, pp. 817-819.
[30] C. E. Shannon, 1949, “Communication theory of secret systems,” Bell System Technical Journal, vol. 28, pp. 656-715.
[31] K. M. Short, 1994, “Steps toward unmasking secure communications,” Int. J. of Bifurcation and Chaos, vol. 4, pp. 959-977.
[32] K. M. Short, 1996, “Unmasking a modulated chaotic communications scheme,” Int. J. of Bifurcation and Chaos, vol. 6, pp. 367-375.
[33] T. Yang, 1995, “Recovery of digital signals from chaotic switching,” Int. J. Circuit Theory and Application, vol. 23, pp. 611-615.
[34] T. Yang, C. W. Wu and L. O. Chua, 1997, “Cryptography based on chaotic systems,” IEEE Trans. on Circuits and Systems-I, vol. 44, pp. 469-472.
[35] N. J. Corron and D. W. Hahs, 1997, “A new approach to communications using chaotic signals,” IEEE Trans. on Circuits and Systems-I, vol. 44, pp. 373-382.
[36] M. Brucoli, D. Cafagna, L. Carnimeo and G. Grassi, 1998, “Synchronization of hyperchaotic circuits via continuous feedback control with application to secure communications,” Int. J. of Bifurcation and Chaos, vol. 8, pp. 2031-2040.
[37] T. L. Liao and N. S. Huang, 1999, “An observer-based approach for chaotic synchronization with applications to secure communications,” IEEE Trans. on Circuits and Systems-I, vol. 46, pp. 1144-1150.
[38] A. Fradkov, H. Nijmeijer and A. Markov, 2000, “Adaptive observer-based synchronization for communication,” Int. J. of Bifurcation and Chaos, vol. 10, pp. 2807-2813.
[39] T. L. Liao and S. H. Tsai, 2000, “Adaptive synchronization of chaotic systems and its application to secure communications,” Chaos, Solitons and Fractals, vol. 11, pp. 1387-1396.
[40] Z. P. Jiang, 2002, “A note chaotic secure communication systems,” IEEE Trans. on Circuits and Systems-I, vol. 49, pp. 92-96.
[41] M. Boutayeb, M. Darouach and H. Rafaralahy, 2002, “Generalized state-space observers for chaotic synchronization and secure communication,” IEEE Trans. on Circuits and Systems-I, vol. 49, pp. 345-349.
[42] S. C. Tsay, C. K. Huang and C. T. Ciang, 2004, “Design the hyperchaotic cryptosystems via the Gerschgorin theorem,” Chaos, Solitons and Fractals, vol. 19, pp. 935-948.
[43] S. C. Tsay, C. K. Huang and W. T. Chen, 2004, “Implementation of bidirectional chaotic communication systems based on Lorenz circuits,” Chaos, Solitons and Fractals, vol. 20, pp. 567-579.
[44] T. L. Liao and N. S. Huang, 1997, “Control and synchronization of discrete-time chaotic systems via variable structure control technique”, Physics Letters A, vol. 234, pp. 262-268.
[45] H. Dedieu and M. J. Ogorzalek, 1997, “Identifiability and identification of chaotic systems based on adaptive synchronization,” IEEE Trans. on Circuits and Systems, vol. 44, pp. 948-962.
[46] A. D. Angeli, R. Genesio and A. Tesi, 1995, “Dead-beat chaos synchronization in discrete-time systems,” IEEE Trans. on Circuits and Systems-I, vol. 42, pp. 54-56.
[47] K. Y. Lian, T. S. Chiang and P. Liu, 2000, “Discrete-time chaotic systems: applications in secure communications,” Int. J. of Bifurcation and Chaos, vol. 10, pp. 2193-2206.
[48] G. Grassi and D. A. Miller, 2002, “Theory and experimental realization of observer-based discrete-time hyperchaos synchronization,” IEEE Trans. on Circuits and Systems-I, vol. 49, pp. 373-378.
[49] P. A. Ioannou and J. Sun, 1996, “Robust adaptive control,” Prentice Hall PRT, New Jersey, USA.
[50] L. Hsu and R. R. Costa, 1989, “Variable structure model reference adaptive control using only input and output measurements,” Int. J. Control, vol. 49, pp. 399-416.
[51] C. T. Chen, 1984, “Linear system theory and design,” Harcourt Brace Jovanovich College Publishers, USA.
[52] C. T. Chen, 1999, “Linear System Theory and Design,” 3-edition, Oxford University Press Inc. New York, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top