跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 12:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宏明
研究生(外文):Hong-Ming Chen
論文名稱:運用可變結構原理於車輛懸吊系統的強健控制器設計
論文名稱(外文):Variable Structure Approaches to Robust Controller Design for Vehicle Suspension Systems
指導教授:任志強任志強引用關係蘇仲鵬蘇仲鵬引用關係
指導教授(外文):Jyh-Chyang RennJuhng-Perng Su
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:129
中文關鍵詞:可變結構控制器半主動懸吊系統主動式懸吊系統互補式可變結構控制可變邊界層滑動模式控制天鉤式阻尼器模糊滑動模式控制
外文關鍵詞:active suspension systemmotorcycle.electro-hydraulic servo systemcomplementary variable structure controlsliding mode control with varying-boundary layerfuzzy sliding mode controlsky-hook dampersemi-active suspension system
相關次數:
  • 被引用被引用:2
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文是設計可變結構控制器,運用於車輛的半主動懸吊及主動懸吊系統,使其改善乘坐舒適性及操控安全性。
本文首先探討懸吊的特性,是從頻率響應的觀點來分析懸吊系統的特性,了解到參數的變動對於懸吊系統性能的影響。引發了設計半主動式懸吊和主動式懸吊控制系統的動機,以達到良好的乘坐性及操控性。
在進行關於電液半主動及全主動式懸吊系統的震動控制前,我們先行針對電液位置伺服系統設計控制器進行研究,提出兩種新的強健性控制技巧來解決位置伺服控制的問題;一種稱為互補式可變結構控制,另一種是可變邊界層滑動模式控制。運用這兩種控制技巧於不同的控制應用時,本文也提出了一些注意事項,此兩種控制法則都經由模擬及實驗測試,驗證了控制器設計的有效性。
由研究位置伺服控制問題的基礎,接下來我們致力於將所發展的互補式可變結構控制技巧應用於電液主動式懸吊系統上。明確來說;我們以兩種不同的觀念獲得兩種不同的控制法則,一個是可變係數之虛擬天鉤式阻尼器法則,另一個是簡化系統模式方式法則。這兩種控制法則均很成功的由理論模擬和實際在由我們為研究,所自行發展的四分之一車體主動式懸吊機台上測試。由模擬及實驗的結果,強烈建議似乎由我們所提出的控制法則能減少由粗造路面所引起的震動干擾問題,確保了乘坐的舒適性。
最後也是很重要的是,我們也提出以模糊滑動模式控制技巧作為機車之半主動式懸吊系統的控制。由於傳統機車前輪之被動式阻尼器的性能限制,本研究提出一種修正型之新伺服油壓半主動懸吊系統,藉以提升乘坐的舒適性。由於伺服油壓半主動懸吊系統因所發展出的比例閥有非線性特性,如死區、遲滯現象以及閥軸摩擦力等問題。為補償這些不利的因素,我們提出一新模糊滑動模式技巧來控制此一半主動懸吊系統。實驗結果顯示所提出的半主動式懸吊模糊滑動模式控制的性能優於傳統型之被動式懸吊。
In this dissertation, we investigate the design of variable structure controllers for vehicle semi-active suspension systems and active suspension systems to improve both riding comfort and safety-driving performance.
The characteristics of vehicle suspension systems and the effect of parameter variations on system performance were firstly addressed. The primary analysis of the characteristics of suspension systems from the frequency response viewpoints help motivate the need to develop semi-active or/and active suspension control system design in achieving a good riding and driving quality.
Before proceeding to deal with the vibration control of electro-hydraulic semi-active and active suspension systems, we first investigate the controller design of an electro-hydraulic position servo system. Two novel robust control schemes were proposed to tackle the position servo control problem. The first one is called complementary variable structure control, and the other one is termed sliding mode control with varying-boundary layer. The effectiveness of both control laws is demonstrated through extensive simulations and practical tests. Some remarks were made in the dissertation when applying these control schemes to various control applications.
Base on the study of the position servo control problem, we then devoted ourselves to the development of a complementary variable structure control scheme for an electro-hydraulic active suspension system. Specifically, we derived two control laws from two different respects, namely, the concept of variable-coefficient virtual sky-hook damper and the idea of simplified-model method, respectively. The success of both control strategies has been justified not only through theoretical simulations but also through practical tests on an experimental setup, which is elaborately designed by us to use as a test rig for the study of quarter-car active suspension systems. Both simulation and experimental results strongly suggest the proposed control law seems to be promising in the disturbance reduction problem, which arises from the rough road profile.
Last but not least, we also proposed a fuzzy sliding mode control scheme for motorcycles’ semi-active suspension systems. Because of their limited performance, the original passive dampers used in the front suspension of motorcycles are modified in this study to result in a novel servo-hydraulic semi-active suspension system. However, this servo-hydraulic semi-active suspension suffers from nonlinear characteristics like the dead zone, hysteresis as well as the stick-slip friction inside the developed proportional valve. To compensate these adverse effects we devise a new fuzzy sliding mode control scheme for the semi-active suspension system. Experimental results show that the performance of the proposed fuzzy sliding mode controller is superior to that of the conventional passive suspension system.
Chapter 1 Introduction ----------------------------------------------------------------------- 1
Chapter 2 Characteristics of Vehicle Suspension Systems ------------------------------ 5
2.1 Characteristics and Classification of Suspension systems ------------------ 5
2.1.1 Characteristics ------------------------------------------------------------- 5
2.1.2 Classification --------------------------------------------------------------- 6
2.2 Frequency Response Analysis of Suspension Systems ---------------------- 8
2.3 A Brief Survey of Current Research of Suspension
Systems ----------------------------------------------------------------------------- 13
Chapter 3 Variable Structure Control ------------------------------------------------------ 14
3.1 Sliding Mode Control ------------------------------------------------------------ 14
3.1.1 Conventional Sliding Mode Control ------------------------------------ 14
3.1.2 Integral Sliding Mode Control ------------------------------------------- 16
3.2 Sliding Mode Control with Varying Boundary Layer ----------------------- 17
3.3 Complementary Variable Structure Control ---------------------------------- 21
3.4 Fuzzy Complementary Variable Structure Control -------------------------- 26
Chapter 4 Sliding Mode Control of an Electro-Hydraulic
Position Servo System ---------------------------------------------------------- 28
4.1 Complementary Variable Structure Control of an
Electro-Hydraulic Position Servo System ------------------------------------ 28
4.1.1 Design of Composite Complementary Variable
Structure Control Laws -------------------------------------------------- 29
4.1.2 An Electro-Hydraulic Position Servo System ------------------------- 35
4.1.3 Simulation Results and Discussion ------------------------------------- 36
4.2 Design of a Sliding Mode Control Law with Varying-Boundary Layer for
an Electro-Hydraulic Position Servo System -------------------------------- 42
4.2.1 Control of an Electro-Hydraulic Position Servo System ------------- 42
4.2.2 Sliding Mode Control with Varying Boundary Layer ---------------- 45
4.2.3 Experimental Results and Discussions --------------------------------- 48
Chapter 5 A Fuzzy Sliding Mode Control Scheme for Semi-Active Suspension Systems of Motorcycles --------------------------------------------------------- 57
5.1 Semi-Active Suspension System ---------------------------------------------- 58
5.1.1 Suspension Test Rig for Motorcycles ---------------------------------- 58
5.1.2 Design of the Servo-Hydraulic Semi-Active
Suspension Systems ---------------------------------------------------- 59
5.2 Fuzzy Sliding Mode Controller Design for Motorcycle’s
Semi-Active Suspension Systems --------------------------------------------- 63
5.2.1 A Semi-Active Suspension System Schema
and Its Model ------------------------------------------------------------ 63
5.2.2 Design of Fuzzy Sliding Mode Controller ----------------------------- 64
5.2.3 Experimental Results and Discussion ---------------------------------- 69
Chapter 6 Design of a Complementary Variable Structure Controller
for a Vehicle Active Suspension System ------------------------------------ 75
6.1 An Experimental Set up for a Quarter Car Active
Suspension System --------------------------------------------------------------- 75
6.2 Active Suspension System Control via Virtual Sky-hook ------------------ 76
6.2.1 Mathematical Model of an Active Suspension System --------------- 76
6.2.2 Design of a Nonlinear Variable Coefficient Virtual
Sky-hook Damper ------------------------------------------------------- 81
6.2.3 Composite Complementary Sliding Mode Control ------------------ 83
6.2.4 Simulation Results and Discussion ------------------------------------- 92
6.3 Active Suspension System Control via Simplified
Model Method ------------------------------------------------------------------- 98
6.3.1 Description of a Quarter-Car Active Suspension
System --------------------------------------------------------------------- 99
6.3.2 Complementary Variable Structure Control --------------------------- 102
6.3.3 A Novel Fuzzy Complementary Variable Structure
Control Scheme ---------------------------------------------------------- 109
6.3.4 Experimental Results and Discussion --------------------------------- 110
Chapter 7 Conclusions --------------------------------------------------------------------- 118
Bibliography --------------------------------------------------------------------------------- 120
Autobiography ------------------------------------------------------------------------------ 127
Publication ----------------------------------------------------------------------------------- 128
[1] Alleyne A. and Hedrick J. K., 1995, “Nonlinear adaptive control of active suspensions,”
IEEE Transactions on control systems technology., vol. 3, no. 1, pp.94-101.
[2] Appleyard M. and Welistead P. E., 1995, “Active suspension: some background,” IEE
Proc. Control Theory Appl., vol. 142, pp. 123-128.
[3] Backe,W., 1993, Steuerungs- und Schaltungstechnik II, Umdruck zur Vorlesung, RWTH
Aachen, Germany.
[4] Baik, I. C., Kim, K. H., Kim, H. S., Moon, G. W., and Youn, M. J., 1996, “Robust
nonlinear speed control of PM synchronous motor using boundary layer integral sliding
control with sliding load torque observer,” IEEE PESC’96 Record., vol.2, pp.1242-1247.
[5] Chantranuwathana, S. and Peng, H., “Force tracking control for active suspensions - theory
and experiments,” In Proc. of 1999 IEEE Conf. on Control Applications, Hawai, 1999, pp.
442-447.
[6] Chern, T. L. andWu,Y. C., 1991, “Design of integral variable structure controller and application
to electrohydraulic velocity servosystems,” IEE Proceedings - d, vol.138, pp.439-444.
[7] Chen, H. M., Su, J. P., and Renn J. C., 2002, “A novel sliding mode control of an electrohydraulic
position servo system,” IEICE Fundamentals, vol. e85-a, no.8, pp. 1928-1936.
[8] Chen, H. M., Su, J. P., and Renn J. C., 2003, “A new nonlinear control scheme for a vehicle
active suspension system,” Journal of Franklin Institute, submitted, November.
121
[9] Chen, H. M., Renn J. C., and Su, J. P., 2004, “Sliding mode control with varying boundary
layers for an electro-hydraulic podition servo system,” International Journal of Advance
Manufacturing Technology, Accepted, February.
[10] Chen, H. M., Su, J. P., and Renn J. C., 2004,“Design of a new fuzzy complementary
variable structure controller for a vehicle active suspension system,” International Journal
of Advance Manufacturing Technology, submitted, March.
[11] Chou, J. H., Chen, S. H. and Lee, F. Z., 1998, “Grey-fuzzy control for active suspension
design,” Int. J. of Vehicle Design, vol. 19, no. 1, pp. 65-77.
[12] Diong, B. M., 1997, “A sliding mode control approach to the benchmark problem for
nonlinear control design,” Proceedings IECON’97, vol.1, pp.68-72.
[13] Filev, D. P. and Yager, R. R., 1993, “Three models of fuzzy logic controllers,” Cybernetics
and Systems, vol. 24, pp. 91-114.
[14] Fung, R. F., Wang, Y. C., Yang, R. T., and Huang, H. H., 1997, “A variable structure
control with proportional and integral compensations for electro-hydraulic position servo
control system,” Mechatronics, vol.7, pp.67-81.
[15] Fung R. F., and Yang R. T., 1998, ”Application of VSC in position control of a nonlinear
electro hydraulic servo system,” Computer & Structures, vol.66, no. 4, pp.365-372.
[16] Gao, W and Hung, J. C., 1993, “Variable structure control of nonlinear systems: a new
approach,” IEEE Trans. on Indust. Elect., vol.40, pp. 45-55.
[17] Ha, Q. P. , Nguygn, H. Q., Rye, D. C., and Durrant, H. F., 1998, “Sliding mode control
with fuzzy tuning for an electrohydraulic position servo system,” IEEE Conference on
Knowledge-Base Intelligent Electronic System, Adelaide, Australia, pp.141-148.
[18] Hung, J. Y., Gao, W. and Hung, J. C., 1993, “Variable structure control: a survey,” IEEE
Trans. on Indust. Elect., vol.40, pp.2-2.
[19] Hwang, C.-L., 1996, “Sliding mode control using time-varying switching gain and boundary
layer for electrohydraulic position and di¤erential pressure control,” IEE Proceedings -
Control Theory Applications., vol.143, pp.325-33.
122
[20] Hwang, C.-L., and Lan, C. H., 1994, “The position control of electrohydraulic servomechanism
via a novel variable structure control,” Mechatronics, vol.4, pp. 369-391.
[21] Hwang G. C., and Li S. C., 1992, “A stability approach to fuzzy control design for nonlinear
systems,” Fuzzy Sets and Systems, vol. 48, pp. 279-287.
[22] Huang, S. J. and Chao, H. C., 2000, “Fuzzy logic controller for a vehicle active suspension
system,” Proc. Instn. Mech. Engrs., vol. 214 part d, pp. 1-12.
[23] Huang, S. J. and Lin, W. C., 2000, “Adaptive fuzzy controller with sliding surface for
vehicle suspension control,” IEEE Trans. on Fuzzy System., vol. 11 no. 4, pp. 550-559.
[24] Jang, Y. J. and Kim, S. W., 2002, “Gain-scheduled control for an active suspension system
with an asymmetric hydraulic actuator,” IEICE Trans. Fundamentals, vol. e85-a, no. 4,
pp. 903-908.
[25] Jolly, M. R. and Miller, L. R., 1989, “The control of semi-active dampers using relative
feedback signals,” S.A.E. Trans., pp. 9-17.
[26] Katsuda, T., Hiraiwa, N., Doi, S., and Yasuda, E., 1992, “Improvement of ride comfort by
continuously controlled damper,” S.A.E. Trans., pp. 73-80.
[27] Kawaji, S. and Matsunaga, M., 1991, “Fuzzy control of VSS type and its robustness,”
Proceedings 3rd IFSA Congress, Brussels, pp. 81-88.
[28] Khalil, H. K., 2002, Nonlinear systems, 3rd Ed. Prentice Hall, Englewood Cli¤s, New
Jersey.
[29] Kim C. and Ro P. I., 1998, “A sliding mode controller for vehicle active suspension systems
with non-linearities,” Proc. Instn. Mech. Engrs., vol. 212 part d, pp. 79-92.
[30] Kim, S. W. and Lee, J. J., 1995, “Design of a fuzzy controller with fuzzy sliding surface,”
Fuzzy Sets & Systems, vol. 71, no. 3 1995.
[31] Kim, W. and Won, Y., 2001, “Modeling and control for an asymmetric hydraulic active
suspension system,” JSME Series C, vol. 44, pp. 397-403.
123
[32] Kiriczi, S. B. and Kashani, R.,1992, “Robust stability analysis of LQG-controlled active
suspension with model uncertainty using structure singular value, ¹, method,” Vehicle
System Dynamics, vol. 21, pp. 361-384.
[33] Kuo, Y. P. and Li, T. H., 1999,“ GA-based fuzzy PI/PD controller for automotive active
suspension system,” IEEE Transactions on Industrial Electronics, vol. 46, No. 6 , pp.
1051-1056.
[34] Lee, C. C., 1990, “Fuzzy logic in control systems: fuzzy logic controller- part I,” IEEE
Trans. on Systems, Man and Cybernetics, vol. 20, pp. 404-435.
[35] Lin, J. S. and Kanellakopoulos, I., 1997, “Nonlinear design of active suspensions,” IEEE
Control System., June, pp. 45-59.
[36] Merrit, H.E., 1967, Hydraulic control system, John Wiely, New York.
[37] Palm, R., 1998, “Fuzzy sliding mode control,” in C. Bonivento, C. Fantuzzi and R. Rovatti
(ed.), Fuzzy Logic Control Advances in Methodology, Singapore, World Scienti…c, pp. 75-
109.
[38] Polycarpou, M. M., 1991, “Stable adaptive neural control scheme for nonlinear systems,”
IEEE Trans. on Automat. Contr., vol.41, pp.447-451.
[39] Rao, M. V. C. and Prahlad, V., 1997, “A tunable fuzzy logic controller for vehicle active
suspension system,” Fuzzy Sets and Syst., vol. 85, pp. 11-21.
[40] Renn, J. C., 1997, “A new approach to synthesize the feedback gain of state-space controller
for a servohydraulic position system,” Journal of Control systems and technology, vol.5,
pp.51-59.
[42] Renn J. C. and Chen, H. M., 2004, “Design of a semi-active suspension system with fuzzy
sliding mode controller for motorcycles” International Journal of Advance Manufacturing
Technology, submitted, February.
[43] Slotine, J.-J. E., 1984, “Sliding controller design for non-linear systems,” Int. J. of Control,
vol.40, pp. 421-434.
124
[44] Slotine, J-J. E. and Li, W., 1991, Applied nonlinear control, Prentice-Hall, Englewood
Cli¤s, New Jersey.
[45] Su, J. P., 2002, “Robust control of a class of nonlinear cascade systems: A novel sliding
mode approach,” IEE Proc.-Control Theory and Applications., vol. 149, no. 2, pp. 131-136.
[46] Sunwoo M. and Cheok K. C., 1991, “Model reference adaptive control for vehicle active
suspension systems,” IEEE Trans. on Industrial Electronics, vol. 38, pp. 217-222.
[47] Thompson A. G., 1984, “Optimal and suboptimal linear active suspensions for road vehicles,”
Veh. Syst. Dynamics, vol. 13, pp. 61-72.
[48] Thompson, A. G., 1976, “An active suspension with optimal linear state feedback,” Veh.
Syst. Dynamics, vol. 5, pp. 187-203.
[49] Ting. C. S., Li T. H. and Fan C. K., 1995, “Design of fuzzy controller for active suspension
system,” Mechatronics, vol. 5, pp. 365-383.
[50] Tsai, S. T., Akers, A., and Lin, S. J., 1991, “Modeling and dynamic evaluation of a twostage
two-spool servovalve used for pressure control,” Trans. ASME, J Dyn. Sys. Meas.
Control. , vol. 113, pp.709-713.
[51] Tseng, H. E., Yi, K., and Hedrick, 1991, “A comparison of alternative semi-active control
laws,” ASME, DE vol. 40, pp. 245-257.
[52] Utikin, V. J., 1997, “Variable structure systems: a survey,” IEEE Trans. on Automat.
Contr., vol.22, pp.212-222.
[53] Williams R. A., 1997, “Automotive active suspensions part 1: basic principles,” Proc.
Instn. Mech. Engrs., vol. 211 Part d, pp. 415-426.
[54] Yoshimura T., Tanaka T., and Itoh, Y., 1993, “A fuzzy inference to semi-active suspension
for compact car,” Proc. First Asian Fuzzy Syst. Symp., Singapore, Nov. pp. 23-26.
[55] Yeh, E. C., Lu,S. H., and Chen C. C., 1994, “Development of fuzzy controller for semiactive
suspension system through genetic algorithm,” Journal of Control Systems and
Technology, vol. 2, no. 4, pp. 271-278.
125
[56] Yokoyama, M., Hedrick, J. K., and Toyama, S., 2001, “A model following sliding mode
controller for semi-active suspension systems with MR damper,” Proc. of the American
Control Conferewnce, Arlington, VA June pp.2652-2657.
126
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top