跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜昀
研究生(外文):Yun Du
論文名稱:以移動球法量測土石漿體及新拌混凝土之流變性
論文名稱(外文):To Measure the Rheological Properties of Soil Grout and Fresh Concrete through Moving Ball Method
指導教授:蔡佐良蔡佐良引用關係
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:172
中文關鍵詞:降伏剪應力黏滯係數賓漢流體液性指數液性限度土石漿體新拌混凝土流變性
外文關鍵詞:soil groutfresh concreteliquidity indexviscosityyield stressBingham fluidrheology
相關次數:
  • 被引用被引用:7
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

土石漿體之流變性是主導土石漿體流動的性質,如土石流之發生及流動及新拌混凝土之流動與輸送均與其材料的流變性密切相關。目前學界均以賓漢流(Bingham fluid)來模擬土石漿體之流變行為,在賓漢流體公式中包括了兩個流變參數(降伏剪應力 (yield stress)及黏滯係數 (viscosity))。
量測流體之流變參數是掌握流體流動的重要工作,方法很多,其中以移動球法及管流之方法可由實驗數據直接套入理論公式計算流體之流變參數,其他方法乃以商業化儀器套用經驗公式或簡化之近似公式,再以移動球法或管流實驗來校正,以訂定公式中的係數,管流實驗較難作,因為管內流體壓力不易準確量取,如果流體是土石漿或混凝土漿,壓力計的開口常會被堵塞,使實驗無法進行,故本研究採用移動球法,以球體在流體中等速移動,來量測流體之流變參數。球體在牛頓流體中等速移動所受阻力之理論解,已經由Stokes推導得到,爾後又有許多的試驗數據驗證了其正確性。本文是推導球體在流塑性體(thixotropy body,即賓漢流體)中等速移動所受阻力之理論解,再以試驗取得阻力與球體移動速度的數據,最後根據理論解計算流體之流變參數(降伏剪應力及黏滯係數)。
又因為新拌混凝土會凝固,故採用黏土材料製作漿體,以模擬土石漿或新拌混凝土漿,來作實驗。本實驗採用不同的黏土材料、含水量與含砂量製作漿體,實驗結果歸納出各種漿體之流變性,並確定移動球法量測賓漢流體流變參數之可行性。
由試驗數據顯示,漿體流變參數值大小順序趨勢上為含石頭之漿體(如新拌混凝土)最大,純黏土漿體次之,含砂之黏土漿體最小;並且發現純黏土漿體及含砂之黏土漿體其液性指數(LI)與漿體之流變參數(降伏剪應力及黏滯係數)有著密切的關係。
ABSTRACT

The rheology of soil grout controls its properties of the flow; therefore, the flow and occurrence of the debris, and the flow and conveyance of the fresh concrete are close related to the rheology of their materials. Nowadays, Bingham fluid, containing two rheological parameters, yield stress and viscosity, is applied to analyze its properties of the flow in soil grout in the academic world.
Measuring the rheological parameters of the fluid is an important work for controlling its flow. Among methods to do that, there are two, moving ball method and piping flow method, which have theoretical formulas, by which the fluid of rheological parameter, can be calculated through the data from experiments. The coefficient in commercial instruments through experience formula or simplified similar formula can be amended by moving ball method and piping flow method among others. Experiments for piping flow are more difficult to practice for its pressure is not easy to be measured. If the fluid is soil grout or fresh concrete, the mouth of the pressure meter is always jammed. The study, therefore, adopts moving ball method to measure rheological parameters of the fluid by moving the ball in the fluid with equal velocity. The drag force of the ball in the Newtonian fluid has been calculated by Mr. Stokes, which has been proved to be accurate by datum from many experiments. The study computes the theoretical formula to measure the drag force of the ball in Bingham fluid with equal velocity and calculate rheological parameters of the fluid, yield stress and viscosity.
The grout of the experiment is mud to simulate soil grout or fresh concrete instead of fresh concrete for it can be condensed. The study chooses different kinds of clay with different water containing and sand containing to form mud. The results of experiments induces rheology properties of different mud and confirms that measuring Bingham fluid parameters with moving ball method is of feasibility.
The experiment datum show that the values of the rheology parameters in the mud with gravel like fresh concrete are on the first top list of the sequence in tendency; that in the pure clay mud, on the second top; that in the clay mud with sand, on the last. They also display that the liquidity index (LI) and rheology parameters (yield stress and viscosity) in the pure clay mud and the clay mud with sand are related closely.
目 錄

第一章 緒 論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究方法 2
第二章 文 獻 回 顧 3
2.1 水泥漿初始塑性狀態變化 4
2.2 一些流變觀念及名詞 5
2.2.1 濃稠性(consistency) 5
2.2.2 彈性(elasticity) 5
2.2.3 黏滯性(viscosity) 6
2.2.4 含懸浮物之流體 6
2.2.5 塑性(plastic) 6
2.2.6 流塑性(thixotropy) 7
2.2.7 增黏性(Dilatancy) 8
2.3 液體狀態之漿體 8
2.3.1 矽土漿體(Silica Pastes) 8
2.3.2 水泥漿體(cement paste) 8
2.3.3 水泥濃度對水泥漿流變性之效應 9
2.4 影響新拌混凝土工作性(流變性)的因素 9
2.5 混凝土之剪力強度及其凝聚力 10
2.5.1 直接剪力試驗 10
2.5.2 三軸壓縮實驗 11
2.6 基本理論公式 11
2.6.1 牛頓流體(Newtonian fluid) 11
2.6.2 非牛頓(non- Newtonian)流體 12
2.6.2.1 賓漢(Bingham)公式 12
2.6.2.2 Carreau-Yasuda公式 12
2.6.2.3 Casson 公式 12
2.6.2.4 Cross 公式 13
2.6.2.5 Ellis公式 13
2.6.2.6 Herschel-Bulkley 公式 13
2.6.2.7 Krieger-Dougherty 公式 13
2.6.2.8 Meter 公式 14
2.6.2.9 Powell-Eyring公式 14
2.6.2.10 Power-law [Ostwald-de waele] 公式 14
2.7 液體中含懸浮固體物之流變性 14
2.8 新拌混凝土之流變性 15
2.9 混凝土流動時所使用之參數 17
2.10 預測新拌混凝土流變特性之模式 17
2.10.1 壓力填塞模式(compressible packing model) 18
2.10.2 模擬懸浮物流動(simulaJion of flow of
suspensions)模式 18
2.10.3 半徑驗模式(semi-empirical model) 19
2.11 量測牛頓流體流變性試驗設備 19
2.11.1 圓管的試驗方法 19
2.11.1.1 玻璃式管黏度計(Glass Capillary Viscometer) 20
2.11.1.2 擠出式管流黏度計 20
2.11.2 同軸旋轉式的試驗方法 20
2.11.2.1 簡單同軸圓筒旋轉黏度計(Brookfield type) 20
2.11.2.2 同軸旋轉流變儀 21
2.12 一般常用之混凝土流變儀 22
2.12.1 可得一個參數的試驗 22
2.12.1.1 坍度試驗 22
2.12.1.2 K坍度試驗 22
2.12.1.3 貫穿棒(penetrating rod)法 22
2.12.1.4 LCL設備試驗 23
2.12.1.5 Ve-Be時間(Ve-Be time)法或重塑試驗
(remolding test)(powers設備) 23
2.12.1.6 流動錐(flow cone) 23
2.12.1.7 振動試驗設備或曲線法(vibration
testing apparatus or settling curve)試驗 23
2.12.1.8 Orimet設備(Orimet apparatus) 23
2.12.1.9 旋轉管黏度計(Turning Tube Viscometer) 23
2.12.1.10 填充法(Filling Aility) 23
2.12.2 可得二個流變參數的流變試驗 24
2.12.2.1 Tattersall兩點式試驗法
(Tattersall Two-Point Test) 24
2.12.2.2 Batta設備(Betta apparatus) 25
2.12.2.3 BTRHEOM 流變儀 26
2.12.2.4 傾斜管試驗方法
(Inclined-piped testing method) 26
2.12.2.5 水平圓管流法(Horizontal tube flow method) 26
2.12.2.6 改良之坍度試驗 26
2.13新拌混凝土工作性量測設備之發展趨勢 27
2.13.1 ERDC對各種新拌混凝土流變儀(或黏度計)之比較 28
2.13.1.1 Free-Orifice Rheometer 29
2.13.1.2 Moving-Object Rheometer 29
2.13.1.2 Moving-Object Rheometer 29
2.13.1.3 Vibrating-Slope Viscometer 29
2.13.1.4 Colebrand Tester 29
2.13.2 ACI 236A小組所試驗之各種混凝土
流變儀性能之比較 30
2.13.3 ACI 236A小組之五種混凝土流變儀之說明 30
2.13.3.1 BML流變儀 30
2.13.3.2 BTRHEOM 流變儀 31
2.13.3.3 CERAGREF-IMG流變儀 31
2.13.3.4 IBB 流變儀 31
2.13.3.5 兩點式流變儀(Two-Point Rheometer) 31
2.13.4 ACI 236A小組試驗結果比較 31
第三章 試驗原理、設備、步驟與材料 60
3.1 賓漢流體能否適用於Navies-Stokes 方程式之說明 60
3.1.1 動量方程式 61
3.1.2 賓漢流體三維不可壓縮黏性流之模式 61
3.2 潛流(Creeping flow)流過球體之討論 62
3.2.1 牛頓流體之均勻潛流流場 63
3.2.2 流場為均勻之潛流且賓漢流體流過球體之總阻力 63
3.2.3 球體在賓漢流體中以定速緩慢拉升之運動 65
3.3 移動球法試驗之儀器與步驟 66
3.3.1 試驗儀器 66
3.3.2 試驗步驟 66
3.4 賓漢漿體流變參數之計算 67
3.5 試驗材料 68
3.5.1 高嶺土 68
3.5.2 陶土 69
3.5.3 雲林縣古坑鄉華山村華山溪(簡稱:華山土樣) 69
3.5.4 標準砂 69
3.5.5高嶺土與標準砂之混合土壤 69
3.5.6 新拌混凝土 69
3.6 其它試驗 70
3.6.1 阿太堡限度試驗 70
3.6.1.1 液性限度試驗 70
3.6.1.2 塑性限度試驗 71
3.6.1.3 篩分析試驗 71
第四章 試驗結果與討論 81
4.1 麥芽糖材料之流變性 81
4.2 黏土漿體之流變性 82
4.2.1 以移動球法量測陶土漿體之流變試驗 82
4.2.2 以移動球法量測高嶺土漿體及高嶺土與標準砂混合漿體
之流變性試驗 83
4.3 試驗結果之評估 84
4.3.1 流變參數偏差之計算 84
4.3.2 陶土漿體(含水量為50%)試驗結果之評估 84
4.3.3 高嶺土漿體及高嶺土與標準砂混合漿體
試驗結果之評估 85
4.3.4 粗糙面大理石球與光滑面鋼球試驗所得
流變參數之比較 85
4.3.5 試驗漿體流變性之評估 85
4.3.6雲林縣古坑鄉華山村山坡土石流發生地土樣之評估 86
4.4 傳統新拌混凝土漿體之流變性 87
4.5 陶土漿體、高嶺土漿體、含砂之高嶺土漿體
、傳統混凝土及華山土漿體流變性之評估 88
第五章 結 論 與 建 議 153
5.1 結論 153
5.2 建議 155
參考文獻 157
參考文獻
1. Bartios, P. (1992). Fresh Concrete: Properties and Tests.
2. Banfill, P. F. G. (1991). Rheology of Fresh Cement and Concrete, E&FN Spon, London.
3. Wierig, H. J. ed. (1990). Properties of Fresh Concrete,Proc. Of the Coll. RILEM, Chapman and Hall.
4. Tattersall, G. H. (1976). The workability of concrete, A viewpoint Publication. PCA.
5. Ferraris, Chiara F. (1999). "Measurement of the Rheological Properties of High Performance Concrete : State of the Art Report," Journal of Research of the National Institute and Technology, September-October.
6. Larsen, R. L., "Use of controlled Low-Strength Material in Iowa," Concrete International, Vol.
7. Ramme, B. W. (1998). "Progress in CLSM: Continuing Innovation, " Concrete International, VOL.19, No.5, pp.32-33.
8. 吳正堂, 謝正倫 (2002). "土石流潛勢溪危險度評估之研究, " 國立成功大學暨海洋研究所碩士論文pp.7。
9. American Society for Testing and Materials. (1994). Annual book of ASTM standards, Philadelphia, PA.
a. Designation C 33, "Standard specification for concrete aggregates."
b. Designation C 125-93, "Standard terminology relating to concrete and concrete aggregates. "
c. Designation C 143, "Standard method for slump of hydraulic-cement
concrete. "
d. Designation C 172, "practice for sampling freshly mixed concrete. "
e. Designation C 231, "Test method for air content of freshly mixed concrete by the pressure method. "
f. Designation C 236, "Standard test method for penetration in freshly mixed hydraulic cement concrete. "
g. Designation C 1064, "Test method for temperature of freshly mixed Portland cement concrete. "
h. Designation C 1170, "Test methods for determining consistency and density of roller-compacted concrete using a vibrating table. "
10. American Concrete Institute. (1990b). Cement and concrete terminology. ACI 116R, ACI manual of concrete practice, part 1, Farmington Hills, MI.
11. Ferraris, C. F. (1996). "Measurement of rheological properties of high performance concrete: State of the art report , " National Institute of Standards and Test IR-5869, Gaithersburg, MD.
12. Scanlon, J. M. (1994). "Factors influencing concrete workability. " Klieger, P., and Lamond, J. F., ed., Testing and Materials, STP 169C, Philadelphia, PA.
13. Dewar, J. D., and Anderson, R. (1992). Manual of ready-mixed concrete. 2 ed., E&FN Spon, London.
14. Banfill, P. F. G. (1991). "Rheology of fresh mortar, " Magazine of Concrete Research 43(154), 13.
15. Tattersall,G. H.(1971). "Workability and quality control of concrete, " E&FN Spon, London, 254.
16. Tattersall, G. H., and Banfill, P. F.G. (1983). The rheology of fresh concrete. Pitman, Boston, MA.
17.Powers. T. C. (1968). The properties of fresh concrete. Wiley, New York.
18. L''Hermite, R., and Turnon , G. (1948). "Vibration of Fresh concrete, " Technical Publication No. 2. Centre d’Etudes et de Recherches de L''Hermite Industrie des Liants Hydraulique, Paris.
19. L''Hermite, R. (1949). "Vibration and Rheology of Fresh Concrete, " Rev. Mater. Construc. (405), Centre d’Etudes de Recherches de l’Industrie des iants Hydraulique, Technical Publication NO.14
20. U.S. Department of Transportation Federal Highway Administration. (2001). "Portland-Cement Concrete Rheology and Workability: Final Report, " Research, Development , and Technology 6300 georgetown Pike Mclean, VA. April.
21. Ferraris, Chiara F., and Lynn, E. Brower. (2000). "Comparison of concrete rheometers : International tests at LCPC(Nantes, France), " NISTIR 6819, October.
22. Richtie, A.G. B. " The Triaxial Testing of Fresh Concrete, " Mag. Concr. Res., 14.
23. "Gloosary of Terms on Cement and Concrete Technology-Increments 2,3, and 4, " proc. ACI 61, 487-507, 1964, Report by ACI Committee 116, Walter H. Price, Chairman.
24. Webter’s Third New International Dictionary, G. & C. (1961). Merriam Company, Springfield, Mass.,
25. Reiner, M. (1960). Deformation Strain and Flow, Interscience, Hew York, p. 4.
26. Bingham, E. C. (1922). Fluidity and Plasticity, Mc. Grraw-Hill, New York, Chapter 8.
27. Dellyes, R. (1954). "The rheology of Cement Slurries. " Revue des Materiaux de Construction, Publication Technique, No. 68 Centre d’Etudes et des Recherches de l’Industrie des Liants Hydrauliques, Paris. Translated by L. M. L. (1955). Department of Scientific and Industrial Research, Build-ing Research Station, Library Communication No. 715, September
28. de la Pena, C. (1952), "The Workability of Concrete and Its Measurement, " RILEM Bulletin No. 8, Chapter 2.
29. Greenberg, S. A., Jarnutowski, R., and Chang , T. N. (1963), "The Rheology of Silica Suspensions, " Portland Cement Association Serial No. 1045.
30. Papadakis, M. (1955). "Rheology of Cement Suspensions. " Tech. Publ. No 72. Centre d’Etudes et de Recherches de Industrie des Liants Hydrauliques, Paris.
31. Ish-Shalom, M., and Greenberg, S. E. (1962). "The Rheology of Fresh Portland Cement Pastes. " Proc. Fourth International Symposium on the Chemistry of Cement, " Nat Bar. Std (U.S.) Monograph 43, 2, 731-743.
32. Gaskin, A. J. (1962). "Discussion of The Rheology of Fresh Portland Cement Pastes, " by Ish-Shalom , M. and Greenberg, S. E. Proc. Fourth International Symposium on the Chemistry of Cement, Nat. Bur Std. (U.S.) Monograph 43, 744-748.
33. Bartos, P. (1993a). "Workability of special concrete mixes, " Materials and Structures 26(155), 50.
34. Bartos, P. (1993b). "Special concretes: Workability and mixing. " Proc. Intl RILEM Workshop. TA416R5P, No.24, E&FN Spon, London.
35. Mindess, and Young. (1981). Concrete. Prentice-Hall., Englewood Cliffs, NJ.
36. Gilmont, R. (1964). "Viscosity, measurement and control. " A falling-ball viscometer. Aronson & Nebon, Pittsburgh, Instruments Pub. Co., Pittsburgh, PA.
37. Hobbs, H.W. (1993). "Workability and water demand, Special Concretes: Workability and Mixing. " Proceedings, International RILEM Workshop. P. J. M. Bartos, ed., March 2-3, paper 7, Paisley, Scotland.
38. Popovics, S. (1962). "Relations between the change of water content and the consistency of fresh concrete, " Magazine Concrete Research, July.
39. Glanville, W. R., Cllins, A. R., and Mathews, D. D.(1984). "The grading of aggregate and workability of concrete, " Road Research Tech. Paper(5), H. M. Stationary Office, London.
40. U. S. Department of the Interior. (1975). Concrete Manual. 7 ed., revised, Wiley, New York.
41. Malek, R. I. A. and Roy, D. M. (1992). "Effects of superplasticize on the workability of concrete as evident from apparent viscosity, yield stress and zeta-potential. " Materials Research Society Symposium, Proceeding on Flow and Microstructure of Dense Suspension, published by Materials Research Society, Pittsburgh, PA.
42. Cordon, W. A. (1955). "Entrained air-a factor in the design of concrete mixes, " Journal of ACI, Proceedings 51, 881, May.
43. Mehta, P. K. (1986). "Structure, Properties, and Materials, " Concrete manual. Prentice-Hall, Englewood Cliffs, N.J
44. Paya, J., Monzo, J., and Gonzalez-Lopez, E. E. (1996). "Mechanical treatment of fly ashes, Part II: Particle morphologies in ground fly ashes (GFA) and workability of GFA-cement mortars, "Cement and Concrete Research 26(2), 225-235.
45. Punkki, J., Golaszewski, J., and Gprv, O. (1996). "Workability loss of high-strength concrete, " ACI Materials Journal 93(5), 427.
46. Krstulovic, P. (1994). "A new approach in evaluation of filler effect in cement. I. Effect on strength and workability of mortar, " Cem.&Concr. Res. 24(4), 721-77.
47. Mora, E.P., Paya, J., and Monzo, J. (1993) "Influence of different sized fractions of a fly ash on workability of mortars, " C&CR 23(4), 917-924.
48. Bayasi, Z. (1992). "Effects of fly ash on the properties of silica fume concrete, "Concrete International 14(4), 52-54.
49. Ikpong, A. A. (1992). "Strength characteristics of medium workability ordinary Portland cement-rice hush ash, "Building and Environment 27(1), 105.
50. Naik, T.R., and Ramme, B.W. (1990). "High early strength fly ash concrete for precast/prestressed products, " PCI Journal 35(6), 72.
51. Kucharska, L., and Moczko, M. (1994). "Influence of silica fume on the rheological properties of the microsilica of high-performance, " Adv. Cem. Res. 6, 139-145.
52. Male, P. L. (1993). "Workability an mixing of high performance microsilica concrete, Special Concretes: Workability Mixing, " Proceedings, International RILEM Workshop. P.J.M. Bartons, ed , paper 19, Paisley, Scotland, 177-180.
53. U.S. Department of the Interior. (1981). Concrete manual. 8 ed., revised, Wiley, New York.
54. Bishop, A. W., and Bjeerum, L. (1960). "The Relevance of the Triaxial Test to the Solution of Stability Problem, " Proceedings, Research Conference on Shear Strength of Cohesive Soils, ASCE, 437-50.
55. Ritchie, A. G.. B. (1962). "The Triaxial Testing of Fresh Concrete, " Magazine of Concrete Research, 14(4), 37-41.
56. Bishop, A. W., and Henkel, D.J. (1957). The Triaxial Test, Edward Arnold, London.
57. Hackley, Vincent A., and Ferraris, Chiara F. (2001). "The Use of Nomenclature in Dispersion Science and Technology, " NIST Recommended Practice Guide, Special Publication 960-3, August.
58. Struble , L. J., and Sun, G. K. (1994). Viscosity of Portland Cement Paste as a Function of Concentration, Adv. Cement Based Mat.
59. Atzeni, C., Massida, L., and Sanna, U. (1985). Comparison between Rheological Models for Portland Cemment Pastes, Cem. Concr. Res. 15.11-519 .
60. de Larrard, F., Ferraris, C. F., and Sedran, T. (1998). Fresh Concrete: A Herschcl-Bulkley Material, Mater. Struct. 31, 494-498.
61. Kosmatka, S. H., and Panarese, W. C. (1994). Design and Control of Concrete Mixtures, PCA.
62. Richtie, A. G. B. (1962). The Triaxial Testing of Fresh Concrete, Mag. Concer. Res. 14(40). 37-41.
63. Ferraris, C. F., and Gaidis, J. (1992). Connection between the rheology of concrete and the rheology of cement paste, ACI. 88. 388-393.
64. Yang, M., and Jennings, H. M. (1995). Influences of Mixing Methods on the Microstructure and Rhcological Behavior of Cement Paste, Advn. Cem. Bas. Mat. 2, 70-78.
65. Ferraris, C.F., and de Larrard,F. (1998). "Testing and Modelling of Fresh Concrete Rheology, " NISTIR 6094, February.
66. de Larrard, F., Ferraris, C.F., and Sedran, T. (1998). "Fresh Concrete: A Herschel-Bukley Material, " Mater. Struct., 31[211] 494-498.
67. Ferraris,F., and Gaidis, J. (1992). "Connection Between the Rheology of Concrete and Rheology of Cement Paste, " ACI Mater. J., 89[4]388-393.
68. Garboczi, E., and Bentz, D. P. (1998). "Multi-Scale Analytical/Numerical Theory of the Diffusivity of Concrete, " Adv. Cem. Based. Mater., 8,77-88.
69. Garbociz, E.J., and Bentz, D. P. (1997). "Analytical Formulas for Interfacial Transition Zone Properties, " Adv. Cem. Based. Mater., 6,99-108.
70. Helmuth, R., Hills, L., Whitting, D., and Bhattacharja, S. (1995), "Normal Concrete Performance in the Presence of Admixtures, " PCA#2006,.
71. Struble, L. J., and Sun, G. K. (1993). "Cement Viscosity as a Function of Concentration"; pp. 173-178 in Flow and Microstructure of Dense Suspensions Edited by Struble, Zukoski, and Maitland. Materials Research Society, Pittsburgh.
72. Standard Test Method for Slump of Hvdraulic Cement Concrete ASTM C143-90, Vol. 04.02.
73. Ferraris, C.F., and de Larrard, F. (1998). Testing and Modelling of Fresh Concrete Rhcology, NISTIR 6094, February.
74. DIN 1045 (1988): Concrete and Reinforced Concrete: Design and Construction. Deitches Institut fur Normung E. V., Berlin.
75. de Larrard, F. and Ferraris, C. F. (1998). Rheologie du beton frais remanie. III:L’essai au cone d’Adrams modifie. Bulletion des Laboratoire des Ponts et Chaussees (france), No. 215, Mai-Juin., pp. 53-60.
76. Ferraris, C. F., and de Larard, F. Modified Slump Test to Measure Rheological Parameters of Fresh Concrete, Cement, Concrete and Aggregates, Vol. 20 #2.. Dcc. 198, pp. 241-247.
77. W.nasser, K. (1976). New and Simple Tester for Slump of Concrete, ACI J. Proc. Vol. 73 #10, p. 561-565.
78. Standard Test Method for Flow of Freshly Mixed Hydraulic Cement Concrete, ASTM C 1362-97, Vol. 04.02
79. Standard Test Method for Ball Penetration in Freshly Mixed Hydraulic Cement Concrete. ASTM C 360-92,Vol. 04.02.
80. de Larrard, F. (1993). Optimization of HPC, Micromechanics of Concrete and Cementitious Composites. Ed. Huet. Switzerland.
81. Popovics, S. (1982). Fundamentals of Portland Cement Concrete: A Quantitative APPROACH, John Wiley.
82. Fred, R. D., and Walker, R.D. (1971). Highway material, McGraw Hill, pp.331-380.
83. Japanese Society of Civil Engineers. (1992). Standard concrete specification (work edition), JSCE, Tokyo, Japan, pp.259-262.
84. Hopkins, C.J., and Cabrera, J.G. (1985). The Turning-Tube Viscometer: an Instrument to Measure the Flow Behavior of Cement-pfa Pastes, Mag. Concr. Res. 37, 101-109.
85. Kuroiwa, S., Matsuoka, Y., Hayakawa, M., and Shindoh, T., Application of Super Workable Concrete in Severe Environments. Paul Zia, ed., ACI SP-140, pp. 147-161.
86. Wallevik, O. H., and Gjorv, O. E., Rheology of Fresh Concrete Advances in Cement Manufacture and Use, Eng. Found. Conf.
87. BML Viscometer, Con Tec Group. C.T. International Ltd., Suite 31 Victoria House, 22-26 Main Street, P.O. Box 569, Gibralta
88. Bcaupre, D. (1994). Rheology of Hogh Performance Shotcrete, Ph. D.Thesis, Univ. of British Columbia, Canada.
89. Beaupre,D. (1998). Private Communication.
90. Tattersall, G. H. (1991). Workability and Quality Control of Concrete, E & FN Spon, London.
91. Leivo, M. (1990). Rheologial Modeling of the Compaction Properties of Concrete. H. J. Wierig, ed., Properties of Fresh Concrete. Proc. of the Coll RILEM. Chapman and Hall.
92. de Larrard, F., Hu, C., Szikar, J. C., Joly, K., Claux, F., and Stedran, T. (1995). A new Rheometer for Soft-to-Fluid Fresh Concrete. LCPC internal report.
93. Mori, H., and Tanigawa, Y. (1992). Simulation Methods for Fluidity of Fresh Concrete, Mcmoirs of the School of Engineering, Nagoya Uni. Vol.44#1.
94. Murata, J., and Suzuki, K. (1997). "New Method of Test The Flowability of Grout, " Magazine of Concrete Research 49 (181) 269-276.
95. Tattersall, G. H., and Banfill, P. F. G. (1983). The Rheology of Fresh Concrete, Pitman Advanced Publishing Program, London.
96. Ferraris, C.F., and Lobo, C. (1983). "Processing of HPC, " Concr. Int., 20 [4] 64-64 (1998).
97. Standard Test Method for Time Setting of Concrete Mixtures by Penetration Resistance. ASTM C403-92, Vol. 0402.
98. Standard Test Method for Time Setting of Hydraulic Cement by Vicat Needle, ASTM C 191-92, Vol. 04.01.
99. Trautwine, J. C. (1904). The civil engineer’s pocket-book. 18 ed., Wiley, New York, 943-947.
100. Powers, T.C. (1932). "Studies of workability of concrete, " Journal of American Concrete Institute 28, 419.
101. Bahrner, V. (1940). "Report on consistency tests on concrete made by means of the Vebe consistometer, " Report No. 1, Joint research group concrete, Svensaka Cementforeigning, March.
102. Balaguru, P., and Ramakrishnan, V. (1987). "Comparison of slump cone and V-B tests as measures of workability for fiber-reinforced and plain, " Cement, Concrete, and Aggregate9 (1), 3-11.
103. Orchard, D. F. (1979). "The measure of the workability of concrete. " Concrete Technology 2.4 ed. Wiley. New York.
104. Wigmore, V. S. (1948). "The consistometer-An apparatus for testing concrete workability on site, " Civil Engineering, London.
105. Anonymous. (1949). "The Wigmore concrete consistometer, " Engineering, March 25.
106. Thaulow, S. (1952). Field testing of concrete. Norsk Cemetforeigning, Oslo.
107. U.S.Army Engineer Waterways Experiment Station. (1949). "Test Methods for determining consistency and density of roller-compacted concrete using a vibrating table, " Handbook for concrete and cement (with quarterly supplements), CRD C-53, Vicksburg, MS.
108. BSA. (1984). :British std. testing concrete, Part 105, "Method for determination of flow, " BSA 1881, British Standards Institution, London.
109. BSA. (1993). "Testing concrete, Part 1036, “Method for determination of compacting factor, " BS 1881, British Standard Institution, London.
110. Neville, A. M., and Brooks, J. J. (1987). "Concrete technology. " Longman Scientific & Technical, Harlow, Essex, UK, Wiley, New York.
111. Powers, T.C., and Wiler, E.M. (1941). "A device for studying the workability of concrete. " Proceedings of the ASTM 41, American Society of Testing and Materials, Philadelphia, PA.
112. Saucier, K.L. (1996). "Investigation of a vibrating slope method for measuring concrete workability, "Miscellaneous Paper 6-849, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
113. Angles, J. (1974). "Measuring workability, " Concrete 8(12), 26.
114. Kurokawa, Y., Tanigawa, Y., Mori, H., and Komura, R. (1994). "Study on the slump test and slumpflow test of fresh concrete. " Trans. Of the Japan Concrete Institute 16, 25-32.
115. Mor, A., Ravina, D. (1986). "DIN flowtable, " Concrete International: Design and Construction 8(12), 53-56.
116. Kelley, J.W., and Polivka, M. (1955). "Bal test for field control of concrete consistency, " Journal ACI Proceedings 51, 811, May.
117. Howard, E.L., and Leavitt, G (1952). "Kelly ball vs. slump cone, "Journal of ACI Proceedings 48, 353-356.
118. Wallevik, O. (1996). "The use of BML viscometer for quality control of concrete, " Proceedings, Concrete Research, Nordic Concrete Research Meeting. Espoo, Finland, 235-236.
119. Nasser, K.W. (1976). "New and simple tester for slump of concrete, " Proceedings of American Concrete Institute 73(10), 561-565.
120. Tattersall. G. H. (1983). "Practical user experience with the two-point workability test, " Report BS-74, Sheffield Univ., Dept. of Building Science.
121. Tattersall, G. H. (1982). "Control of high workability concrete. " Concrete 16(3), 21-24.
122. Tattersall, G. H., and Baker, P.H. (1989). "Investigation on the effect of vibration on workability of fresh concrete using a vertical pipe, " Magazine of Concrete Research 41, 3-9.
123. Tattersall, G. H. and Bollmer, S. J. (1979). "Further development of the two-point test for workability and extension, " Magazine of Concrete Research 31,202210.
124. Banfill, P.F.G.. (1990). "Use of the viscoCorder to study the rheology of fresh morar, " Magazine of Concrete Research 42(153), 213.
125. Banfill, P. F. G.. (1949). "Rheological methods for assessing the flow properties of mortar and related materials, " Construction and Building Materials 8(1), 43-50.
126. British Society of Rheology. (1991). "Rheology of fresh cement and concrete, " Banfill, P. F. G., ed., E&FN Spon, London.
127. Tattersall, G. H. (1971). "Measurement of workability of concrete, " East Midlands Region of the Concrete Society of Nottingham.
128. Odar, Fuat. (1967). "Forces on a sphere moving steadily along a circular path in a viscous fluid, " CRREL Research Report 229, Champaign, IL.
129. Shepard, C.L., Stewart, C. W., Aizheimer, J.M., and Terrones, G.. (1995). "In stiu determination of rheological properties and void fraction in Hanford Waste Tank 241-SY-101, " Pacific Northwest Laboratories Report PNL-10682, August, Hanford, Washington.
130. Dinsdale, A., and Moore, F. (1962). "Viscosity and its measurement. " Falling sphere and related methods. Chapman Hall, London & Reinhold, New York, Chap 4, 47-61.
131. Nishbayashi, S.,Yamura, K., Inoue, S. (1981). "Rheology Proper Ties of superplasticized. Concrete.Development in the use of superplasticizes, "
Detroit, American Concrete institute, Editor: V.M.MALHOTRA. Special publication SP-68.PP.441-446.
132. KISHITANI, K., TOMOSAWA, F., and OKA, S. (1981) Rheological study of
superplasticized concrete.Developments in the use of super-plasticizers.
Detroit, American Concrete Institute, Editor. V. M. MALHOTRA.
Special publication SP-68.pp.423-441.
133. Bartons, P. (1978). "Workability of flowing concrete. Assessment by a free orifice rheometer, " Concrete 12(10), 28-30.
134. Hackley, V. A., Ferraris, C. F. (1990). "Guide to Rheological Nomenclature: Measurements in Ceramic Particulate System, " NIST Special Publication 946, February 2001.
135. Wallevik, O. K. (1990). "The Rheology of Fresh Concrete and its Application n Concrete with and without Silica Fume. " NTH Trondheim. P. 185(in Norwegian).
136. Wallevik, O. K., Gjorv, O. E. (1905). "Development of a Coaxial Cylinder Viscometer for Fresh Concrete, " Properties of Fresh Concrete, proceedings of the Rilem Colloquium, Champamn &.Hall, Hanover, October, pp. 213-224.
137. de Larrard, F., Szitkar J. C., Hu, C., Joly M. (1993). "Design of a Rheometer for Fluid Concrete RILEM Workshop Special Concretes Workability and Mixing, " 201-208.
138. de Larrard, F., Sedran, T., Hu, C., Szitkar, J.C., Jily, M., Derkx, F. (1996). "Evolution of the Workability of Superplasticized Concretes: assessment with BTRHEOM Rheometer, " RILEM International Conference on Production Methods and Workability of Concrete, RILEM Proceedings 32 , Glasgow, Scotland, June 3-5pp. 377-388.
139. Hu, C. (1995). "Rheologie des betons fluids, " Etudes et Recherches des Laboratoires des Ponts et Chaussees, OA 16, 203 p., Paris, France.
140. Beaupre, D. (1994). "Rheology of High Performance Shotcrete, " Ph. D. Thesis Uni. of British Columbia (Canada).
141. Domone, P. L. J., Xu, Yongmo, Banfill, P. F. G. (1990). "Developments of the Two-Point workability test for high-performance concrete, " Magazine of Concrete Research, vol. 51, pp. 181-190.
142. Tattersall, G. H., Banfill, P. F. G.. (1983). The rheology of fresh concrete, Pitman, London, 356,.
143. Coussot, P. (1993). "Rheologie des boues et laves torrentielles-Etudes de dispersions et suspensions concentress, " These de doctorat de l’institut National Polytechnique de Grenoble, et Etudes du Cemagref, series Montagnen 5, 418 .
144. Mannheimer, R. J. (1983). "Effect of slip on flow properties of oil well cement slurries, " oil and as journal, Dec 5, pp. 144-147.
145. Ferraris, C., Brower, L., Ozyildirim, C., Daczko, J. (2000). "Workability of Self-compacting Concrete, " Symp. Proc. of PCI/FHW/FIB Int. Symposium on High Performance Concrete: The Economical Solution for Durable Bridges and Transportation Structures”, Orlando (FL) Sep 25-27, pp.398-407.
146. Stokes, G..G.. (1851).: On the effect of internal friction of fluids on the motion of pendulums.Trans.Cambr.Phil.Soc.9,Part Ⅱ,8-106or Coll.Papers Ⅲ,55.
147. Desov, A. E. (1951). "Structural Viscosity of Cement and Concrete Mixes, " Kolloid. Zhur., 13(5), 346-356.
148. James, W. Daily, Donald, R.F.Harleman, "Fluid D Yynamic, " Fifth printing March 1973. Reprinted by MEI YA Publications,INC.Taipei,Taiwan.
149. E. Vernon Hill, Inc., P.O. Box 753, Corte Madera, CA 94925.
150. Fage, A. (1983).: Profile and skin-frication airfoil drags. ARS RM 1852.
151. Ansey, P. W., and Smith, A. T., "Motion of Spherical Particles in a Bingham Plastic, " AICHE Journal, Vol. 13, No.6, pp1193.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top