跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪蓓怡
研究生(外文):Pei-Yi Hung
論文名稱:變動抽樣間隔X-bar與R管制圖之經濟性設計
論文名稱(外文):Economic Design of Variable Sampling Intervals X-bar and R Control Chart
指導教授:周昭宇周昭宇引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業工程與管理研究所碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:105
中文關鍵詞:經濟性設計X-bar 與R管制圖變動抽樣間隔
外文關鍵詞:economic designX-bar and R control chartvariable sampling interval
相關次數:
  • 被引用被引用:6
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
管制圖乃是針對製程的穩定度做監控,以降低不良品的產生,亦可用來估計製程中的參數,透過這些訊息來決定製程產能或提供製程改善的有效資訊,因此,管制圖是一個解決問題及品質改善的極佳工具。而製程的控制需同時維持製程平均數及製程變異,如此才能幫助執行者了解整個製程的實際狀況,因此本研究採用X-bar與R管制圖來監控製程。
本研究建構出變動抽樣間隔 (variable sampling interval, VSI)X-bar與R管制圖之經濟性設計,來決定管制圖的七個參數值─抽樣樣本數(n)、抽樣間隔時間(h1、h2)、管制界限係數(L1、L2)及警告界限係數(L3、L4),其目的在於使所有與檢驗程序相關的期望成本最小化。本研究並利用基因演算法(Genetic Algorithm, GA)來搜尋VSI X-bar與R管制圖的七個最佳化參數,且以一個例子說明整個求解過程,最後,再用敏感度分析研究模式之參數解對於經濟性設計的影響,以做為決策上的依據。
The control chart makes the monitoring in process stability to reduce defective production and it can use to estimate process parameters. Then through these messages to determine process production or provide effective information in process improvement, so the control chart is a good tool to solve question and improve quality. The process control must simultaneously maintain the process mean and the process variation, so can help the performers to understand the actual condition about entire process, therefore, in this paper, we uses X-bar and R control chart to monitor process.
In this paper, we develop the economic design of the variable sampling intervals(VSI)X-bar and R control chart to determine the values of seven test parameters of the chart, i.e. the sampling size(n), the sampling interval(h1、h2), the control limits coefficients(L1、L2), and the warning limit coefficients(L3、L4). The purpose is let the expected total cost minimum associated with the test procedure. The genetic algorithm(GA)is used to search for the optimal values of the seven test parameters of VSI X-bar and R control chart, and an example is provided to interpret the solution procedure. And then carried out sensitivity analysis to investigate the effects of model parameters on the solution of the economic design as the basis for making decision.
中文摘要i
英文摘要ii
誌謝iii
目錄iv
表目錄vi
圖目錄viii
第一章 緒論1
1.1 研究背景1
1.2 研究動機與目的 3
1.3 研究流程架構4
第二章 文獻回顧與探討6
2.1 管制圖之經濟性設計6
2.2 X-bar 與R管制圖10
2.3 X-bar 與R管制圖聯合經濟性設計13
2.3.1 成本模式14
2.3.2 成本模式之機率值討論16
2.4 變動抽樣間隔管制圖20
2.5 基因演算法23
第三章 變動抽樣間隔X-bar與R管制圖之經濟性設計模式建構27
3.1 模式假設條件27
3.2 符號定義與說明 28
3.3 模式建構流程31
3.4 模式建構32
3.4.1 變動抽樣間隔之機制模式32
3.4.2 經濟模式修正 34
3.5 成本模式之相關機率值討論36
3.5.1 的決定36
3.5.2 的決定43
3.5.3 的決定53
3.5.4 的決定55
第四章 模式求解58
4.1 求解架構及參數值之設定58
4.2 範例說明59
4.3 基因演算法參數設定71
4.3.1 田口實驗設計72
4.3.2 參數設定之實驗72
4.3.3 實驗結果分析74
第五章 敏感度分析76
5.1 實驗設計76
5.2 實驗結果79
5.3 實驗結果分析80
第六章 結論與建議88
6.1 結論88
6.2 後續研究89
參考文獻90
[1]郭俊映,“雙抽樣區間及樣本之平均值管制圖經濟性設計”,雲林科技大學工業工程與管理技術研究所碩士論文,民國87年。
[2]張永杰,“變動抽樣間隔T2管制圖之經濟性設計”,雲林科技大學工業工程與管理研究所碩士論文,民國92年。
[3]Amin, R. W. and Miller, R. W. (1993)“A robustness study of charts with variable sampling intervals”. Journal of Quality Technology 25, pp.36-44.
[4]Baxely, R, V., Jr. (1995)“An application of variable sampling interval control charts”. Journal of Quality Technology 27, pp.275-282.
[5]Chiu, W. K. and Wetherill, G. B. (1974)“A simplified scheme for the economic design of charts”. Journal of Quality Technology 6, pp.63-69.
[6]Chung, Kun-Jen. (1994) “An algorithm for computing the economically optimal control chart for a process with multiple assignable caused”. Europe journal of operational research 72, pp.350-363.
[7]Costa, A. F. B. (1998)“Joint and R charts with variable parameters”. IIE Transaction 30, pp.505-514.
[8]Costa, A. F. B. (1999)“Joint and R charts with variable sample size and sampling intervals”. Journal of Quality Technology 31, pp.387-397.
[9]Duncan, A. J. (1956)“The economic design of charts used to maintain current control of a process”. Journal of American Statistical Association 51, pp.228-242.
[10]Duncan, A. J. (1971)“The economic design of charts when there is a multiplicity of assignable causes”. Journal of American Statistical Association 66, pp.107-121.
[11]Goel et al (1968)“An algorithm for the determination of the economic design of charts based on Duncan’s model”. Journal of American Statistical Association, pp.304-320.
[12]Ho, C. and Case, H.E. (1994)“Economic design of control charts: a literature review for 1981-1991”. Journal of Quality Technology 26(1), pp.39-53.
[13]Holland, J. (1975)“Adaptation Natural and Artificial Systems”. The University of Michigan Press. Ann Arbor.
[14]Knappenberger, H. A. and Grandage, A. H. (1969)“Minimum cost quality control test”. AIIE Transaction 1, pp.24-32.
[15]Lorenzen, T. J. and Vance, L. C. (1986)“The economic design of control charts: a unified approach”. Technometrics 28(1), pp.3-10.
[16]Montgomery, D. C. (1980)“The economic design of control charts: a review and literature survey”. Journal of Quality Technology 12(2), pp.75-87.
[17]Pearson, E. S. and Hartley, H. O. (1942)“The probability integral of the range in samples of n observations from normal population”. Biometrika 32, pp.301-310.
[18]Reynolds, M. R., JR. (1996a)“Shewhart and EWMA variable sampling interval control charts with sampling at fixed times”. Journal of Quality Technology 28, pp.199-212.
[19]Reynolds, M. R., JR. (1996b)“Variable-Sampling-Interval control charts with sampling at fixed times”. IIE Transaction 28, pp.497-510.
[20]Reynolds, M. R., Amin, W., Arnold, J. and Nachlas, J. (1988) “ charts with variable sampling intervals”. Technometrics, 30(2), pp.181-192.
[21]Saniga, E. M. (1977)“Joint economically optimal design of and R control charts”. Management Science 24, pp.420-431.
[22]Saniga, E. M. (1989)“Economic statistical control chart design with an application and R chart”. Technometrics, 31, pp.257-264.
[23]Tagaras, G. (1998)“A survey of recent developments in the design of adaptive control charts”. Journal of Quality Technology 30, pp.212-231.
[24]Taylor, H.M. (1968)“The economic design of cumulative sum control charts”.Technometrics 10, pp.479-488.
[25]Ting, C. K., S. T. Li, and C. N. Lee (2001)“TGA: a new integrated approach to evolutionary algorithms”. Congress on Evolutionary Computation, pp.917-924.
[26]Woodall, W. H. and Montgomery, D. C. (1999)“Research issues and ideas in statistical process control”. Journal of Quality Technology 31, pp.376-386.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊