跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 17:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:韋祿甄
研究生(外文):Lu-Chen Wei
論文名稱:變動抽樣間隔EWMA管制圖之經濟性設計
論文名稱(外文):Economic Design of the Variable Sampling Intervals EWMA control chart
指導教授:周昭宇周昭宇引用關係
指導教授(外文):Chao-Yu Chou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業工程與管理研究所碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:86
中文關鍵詞:經濟性設計變動抽樣間隔EWMA管制圖基因演算法
外文關鍵詞:genetic algorithmEWMA control chartvariable sampling intervaleconomic design
相關次數:
  • 被引用被引用:9
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:2
在製程管制中,管制圖的目的在於監控製程品質與即時發製程變異,以降低不良品的產出,由於傳統的Shewhart管製圖在偵測製程小偏移反應敏感度不高,因此本研究採用EWMA管制圖來改善此缺點並考量成本對於競爭力的重要性,所以同時加入變動抽樣間隔(VSI)以提升偵測效率,在製程發生小幅度變動時便能即時被發現;加入經濟性設計,期望在最低行政管理成本下能達到相同的偵測能力。本研究採用基因演算法(genetic algorithm, GA)及一範例來說明求得變動抽樣間隔(VSI)EWMA管制圖之經濟性設計的六個參數(抽樣樣本數、長抽樣間隔、短抽樣間隔、警告界限、管制界限及EWMA加權常數)之最適組合的過程,最後,以敏感度分析來探討模式參數值對於經濟性設計的影響。
Control charting is a graphical expression for monitoring process. In this paper, we develop the economic design of the variable sampling intervals EWMA control chart determined by the parameter set(the sample size, the control limit, the warming limit, the short sampling interval, the long sampling interval and the weight constant) that minimizes the total cost. Use the genetic algorithm to search for the optimal parameter set and illustrate the solution procedure by an example. Sensitivity analysis is then carried out to investigate the effects of model parameters on the solution of the economic design.
目錄 I
表目錄 III
圖目錄 IV
誌 謝 1
第一章 緒論 2
1.1 研究背景與動機 2
1.2 研究目的 4
1.3 研究流程架構 5
第二章 文獻回顧與探討 7
2.1 EWMA管制圖 7
2.2 變動抽樣間隔管制圖 10
2.3 經濟性設計之模式 12
2.4 基因演算法 15
2.4.1 基因演算法的基本流程 16
2.4.2 運算模組 17
2.4.3 基因演算法的特色 22
第三章 變動抽樣間隔EWMA管制圖之經濟性設計模式建構 24
3.1 符號定義與說明 24
3.2 模式假設條件 26
3.3 模式建構流程 27
3.4 模式建構 28
3.4.1 變動抽樣間隔之機制模式 28
3.4.2 經濟模式修正 31
3.5 經濟性設計成本模式機率係數之討論 33
3.5.1 的決定 33
3.5.1.1管制狀態下 之推導 35
3.5.1.2非管制狀態下 之推導 36
3.5.2 轉移機率矩陣P的決定 38
3.5.2.1管制狀態下轉移機率矩陣 之推導 38
3.5.2.2非管制狀態下轉移機率矩陣 之推導 39
第四章 模式求解 40
4.1 求解架構及參數設計 40
4.2 範例說明 40
4.3 基因演算法參數設定 52
4.3.1 田口方法 52
4.3.2 基因實驗參數設定 53
4.3.3 實驗結果分析 54
第五章 敏感度分析 57
5.1 實驗設計 57
5.2 實驗結果 60
5.3 實驗結果分析 61
第六章 結論與建議 70
參考文獻 72
[1] 林裕章,周昭宇 (2002). “適應性X-Bar管制圖之回顧與評估,” 中國統計學報第40卷第3期九十一年九月,361-390頁。
[2] Amin, R.W. and Letsinger, W.C. II (1991). “Improved Switching Rules in Control Procedures Using Variable Sampling Intervals,” Communications in Statistics-Simulation and Computation, 20, pp. 205-230.
[3] Amin, R.W. and Miller, R.W. (1993), “A Robustness Study of X-Bar charts with Variable Sampling Intervals,” Journal of Quality Technology, 25, pp. 36-44.
[4] Arnold, J. C. (1970). “A Markovian Sampling Policy Applied to Quality Monitoring of Streams,” Biometrics, 26, pp. 739-747.
[5] Chiu, W. K. and Wetherill, G. B. (1974). “A simplified scheme for the economic design of X-bar charts,” Journal of Quality Technology, 6, pp. 63-69.
[6] Crowder, S. V. (1987). “A Simple Method for Studying Run Length Distributions of Exponentially Weighted Moving Average Control Charts,” Technometrics, 29, pp. 401-407.
[7] Davis L. (1991)., Handbook of genetic algorithms. Van Nostrand Reinhold.
[8] Dodge, H. F. (1955). “Skip-Lot Sampling,” Industrial Quality Control, 11, 5, pp. 3-5.
[9] Duncan, A. J. (1956). “The economic design of X-bar charts used to maintain current control of a process,” J.of Am. Statist. Assoc. 51(274), pp. 228-242.
[10] Duncan, A. J. (1971). “The economic design of X-bar charts when there is a multiplicity of assignable causes,” Journal of American Statistical Association, 66, pp. 107-121.
[11] Gen M. , Cheng R. (1997). "Genetic Algorithm & Engineer Design," Willey-Interscience Publication, pp. 2-4.
[12] Gilbert O. and John R. (2001). “Economic designs of constrained EWMA and combined EWMA- control schemes,”IIE Transactions, pp. 429-436.
[13] Ho, C. and Case, K.E. (1994). “The Economically-Based EWMA Control Chart,” International Journal of Production Research 32, pp. 2179-2186.
[14] Hunter, J. S. (1986). “The Exponentiallly Weighted Moving Average,” Journal of Quality Technology, 18, pp. 239-250.
[15] Holland J. (1975). Adaption in Natural and Artificial Systems. The University of Michigan Press.
[16] Lorenzen, T.J. and Vance, L.C. (1986). “The Economic Design of Control Charts: A Unified Approach,” Technometrics, 28, pp. 3-10.
[17] Lucas, J. M. and Saccucci, M. S. (1990). “Expoenetially Weighted Moving Average Control Schemes : Properties and Enhancements,” Technometrics, Vol. 32, pp. 1-16.
[18] Man K. F., Tang K. S., and Kwong S. (1996). “Genetic algorithms:concepts and applications,” IEEE Trans. Industrial Electronics, vol.43, no. 5, pp. 519-534.
[19] Montgomery D.C., Torng, J. C.-C; Montgomery, D.C.; Cochran, J.K., and Lawrence F.P. (1995). “Statistically Constrained Economic Design of the EWMA Control Chart,” Journal of Quality Technology, Vol.27, No.3, pp. 250-256.
[20] Poirier E., Ghribi M., and Kaddouri A. (2001) “Loss minimization control of induction motor drives based on genetic algorithms,” Proceedings of IEEE Conference on Electric Machine and Drives, pp. 475-478.
[21] Reynolds, M.R., Amin, W., Arnold, J. and Nachlas, J. (1988). “X-Bar Charts with variable sampling intervals,” Technometrics, 30(2), pp. 181-192.
[22] Reynolds, M.R., Jr., Amin, R.W., and Arnold, J.C.(1990). “CUSUM Charts With Variable Sampling Intervals,” Technometrics, 32, pp. 371-384.
[23] Roberts, S. W. (1959). “Control Chart Tests Based on Geometric Moving Average,” Technometrics, Vol. 1, pp. 239-250.
[24] Robinson, P. B. and Ho, T. Y.(1978). “Average Run Lengths of Geometric Moving Average Charts by Numerical Methods,” Technometrics, 20, pp. 85-93.
[25] Saccucci M.S., Amin R.W., and Lucas J.M. (1992). “Exponentially Weighted Moving Average Control Schemes With Variable Sampling Intervals,” Communication in Statistics-Simulation and computation. 21. pp. 627-657.
[26] Saniga, Erwin M..(1977) “Joint economically optimal design of x-bar and R control charts,”Management Science, Dec77, Vol. 24 Issue 4, p420, 12p.
[27] Tagaras, G. (1998). A survey of recent developments in the design of adaptivecontrol charts. Journal of Quality Technology, 30, 212-231.
[28] Torng, J. C.-C; Montgomery, D. C.; and Cochran, J. K. (1994). “Economic Design of the EWMA Control Chart”. Economic Quality Control 9, pp. 3-23.
[29] Waldman, K. H.(1986), “Bounds for the Distribution of the Run Length of Geometric Moving Average Charts,” Applied Statistics, 35, pp. 151-158.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top