跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王世銘
研究生(外文):Shih-Ming Wang
論文名稱:使用鎳金屬之催化機制以改善P型氮化鎵之電特性
論文名稱(外文):Study of the novel method to improve electrical characteristic of p-type GaN by applying Ni catalysts
指導教授:黃柏仁黃柏仁引用關係
指導教授(外文):Bohr-Ran Huang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:92
語文別:英文
論文頁數:78
中文關鍵詞:鎳金屬催化劑退火p型氮化鎵光激發系統感應耦合電漿蝕刻系統
外文關鍵詞:Ni、catalytic、annealing、p-type GaN、photolumin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:451
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將探討不同鎳金屬厚度和退火溫度對p型氮化鎵之影響,並找出提升電洞濃度與改善電特性的最佳條件。選擇鎳金屬為催化劑乃其對於氫元素有強烈之吸附結合性,亦利用光激發系統、二次離子質譜儀、感應耦合電漿蝕刻系統、霍爾分析儀、電流-電壓量測儀等設備分析其光電特性。
我們研究不同厚度之鎳金屬 (2、10、20和50 nm) 於退火後對於p型氮化鎵內部氫濃度之影響。結果顯示,利用鎳催化後之p型氮化鎵電特性優於傳統退火方法,而經由2 nm的鎳催化層於600度催化後之電洞濃度可達3.25×1018cm-3,載子遷移率為0.922 cm2/Vs。於相同溫度下,其電洞濃度比未使用鎳催化方式之p型氮化鎵高出10倍左右。
再者,利用光激發系統分析鎳催化後之p型氮化鎵的光特性,其主要能量範圍於2.75至2.9電子伏特 (波長為450至425nm)之鎂元素,我們亦發現當利用鎳催化方式於200至800度之間退火,其能量範圍有明顯變化。此變化原因亦利用二次離子質譜儀作進一步分析。
使用二次離子質譜儀分析p型氮化鎵內部氫、氧和鎳含量於200、500、700和800度的氮氣環境中,利用鎳催化效應退火十分鐘後之變化。結果顯示,不管有無鎳催化層,當退火溫度高於500度,其內部之氫濃度皆減少而氧濃度增加。然而,氫和氧元素於表面有聚集現象,我們認為此乃因鎳金屬滲入p型氮化鎵內部原因而影響其光電特性。
於本論文,我們將探討有無鎳催化的p型氮化鎵之電特性,並利用感應耦合電漿蝕刻系統研究鎳於表層所形成之化合物對p型氮化鎵電性的影響。
In this dissertation, we will discuss different conditions of Ni film thickness and annealing temperatures for p-type GaN to find out the best way to increase the hole concentration and improve electrical characteristic. We chose Ni because it has been widely used in hydrogen storage alloys to increase the hydrogen desorption rate, and use several kinds of instruments to analyze the optic and electrical properties, include of photoluminescence (PL), second ion mass spectrometry (SIMS), inductively coupled plasma (ICP), Hall effect measurement and I-V measurement.
Study the Ni catalysis of 2, 10, 20 and 50 nm thick under various annealing temperatures to reduce H concentration in p-type GaN layer. In these results, the I-V curves show higher electrical characteristic than convention process method, the highest hole concentration of 3.25×1018 cm-3 with the mobility of 0.922 cm2/Vs was obtained at the annealing temperature of 600℃ (approximately 2 nm thick). This hole concentration is one order of magnitude higher than that of the sample without the Ni
film at this annealing temperature, and then, employ photoluminescence to define meaning of several peaks, Mg peak location ranging from 2.75 to 2.9 eV (450~425 nm), we discover that Mg peak changed evident when annealed in the temperature range of 200℃ to 800℃ with Ni catalytic. So we apply SIMS to analyze the internal elements of p-type GaN layer further.
We analyze the number of H, O and Ni in Mg-doped GaN layer after treated with different thickness of Ni films annealing in nitrogen atmospheres in the temperature range of 200℃, 500℃, 700℃ and 800℃ for 10 min. The results indicated that the H concentration decreased and O concentration increased when samples annealed with and without Ni at high temperature (>500℃), and the H and O concentration increased and collected in shallow layer. We infer that Ni diffused in Mg-doped GaN layer will influence the optic and electrical property of as-grown Mg-doped GaN.
In this dissertation, we mainly aimed at the electrical properties of Mg-doped GaN with and without Ni film at different annealing temperatures, and study the electrical characteristic when the Ni compound materials in shallow layer of p-type GaN via ICP instrument.
Contents
page
中文摘要 ……………………………………………………… Ⅰ
Abstract ……………………………………………………… Ⅲ
誌 謝 ……………………………………………………… Ⅴ
Contents ……………………………………………………… Ⅵ
Figure Captions ……………………………………………………… Ⅷ

Chapter 1 Introduction………………………………………… 1
1.1 The background of GaN-Based LEDs…………… 1
Chapter 2 Theory and Measurement Techniques………. 6
2.1 Current spreading……………………………. ……. 6
2.2 The mechanism of Ni catalyst…………………….. 8
2.3 Analysis tools………………………………………... 9
2.3.1 Photoluminescence (PL) ………………………….. 9
2.3.2 Second ion mass spectrometry (SIMS) …………. 10
2.3.3 Hall effect measurement…………………………… 11
Chapter 3 Experiment Arrangement………………………. 12
3.1 The structure of p-type GaN sample…………….. 12
3.2 The procedures of Ni catalysts on Mg-doped GaN……………………………………………………. 13
3.2.1 Sample cleaning……………………………………... 13
3.2.2 Ni catalysts…………………………………………… 13
3.2.3 Annealing conditions……………………................. 14
3.2.4 ICP etching………………………………………….. 14
3.2.5 Mg-doped GaN contact layer……………………... 14
3.3 Equipment……………………………………………. 16
3.3.1 ICP system…………………………………………… 16
Chapter 4 Results and Discussion…………………………… 17
4.1 The roughness of Ni films…………………………. 17
4.2 The definition of Mg-doped GaN peaks………… 18
4.3 Hall effect measurement……………………………
20
4.4 SIMS analysis……………………………………….. 22
4.5 The electrical properties of Mg-doped GaN with and without Ni film…………………………… 25
4.6 The electrical properties of Mg-doped GaN with and without Ni film after ICP etching…….. 27
Chapter 5 Conclusions…………………………………………. 29
References 31
[1]Shuji Nakamura, Gerhard Fasol and Stephen J. Pearton, 2000, The Blue Laser Diode: The Complete Story, Springer Verlag.
[2]Shuji Nakamura, “III-V Nitride Based LED”, Solid State Communications, Vol. 102, No. 2-3, pp. 237-248, 1997.
[3]S. C. Jain, J. Narayan, “III–nitrides: Growth, characterization, and properties”, J. Appl. Phys., Vol. 87, No. 3, 1 February 2000
[4]S. Strite, H. Morkoc, “GaN, AlN and InN : The review”, J. Vac. Sci. Technol. B 10(4), 1992.
[5]S. J. Peartona, J. C. Zolper, R. J. Shul, “GaN: Processing, defects, and devices”, J. Appl. Phys., Vol. 86, No. 1, 1 July 1999
[6]J. K. Ho, C. S. Jong, C. C. Chiu, “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett., Vol. 74, No. 9, 1 March 1999.
[7]L. C. Chen, L. Chang, J. K. Ho, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN”, J. Appl. Phys., Vol. 86, No. 7, 1 October 1999.
[8]J. K. Ho, C. S. Jong, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films”, J. Appl. Phys., Vol. 86, No. 8, 15 October 1999.
[9]L. C. Chen, J. K. Ho, L. Chang, “Oxidized Ni/Pt and Ni/Au ohmic
contacts to p-type GaN”, Appl. Phys. Lett., Vol. 76, No. 25, 19 June
2000.
[10]T. Maeda, Y. Koide, M. Murakami, “Effects of NiO on electrical
properties of NiAu-based ohmic contacts for p-type GaN”, Appl.
Phys. Lett., Vol. 75, No. 26, 27 December 1999.
[11]H. W. Jang, S. Y. Kim, J. L. Lee, “Mechanism for ohmic contact formation of oxidized Ni/Au on p-type GaN”, J. Appl. Phys., Vol. 94, No. 3, 1 August 2003.
[12]Z. X. Qin, Z. Z. Chen, H. X. Zhang, “The role of Ni and Au on transparent film of blue LEDs”, Solid-State Electronics, Vol. 47, pp. 1741-1743, 2003.
[13]L. C. Chen, C. Y. Hsu, “GaN-based light-emitting diodes with Ni/AuBe transparent conductive layer”, Solid-State Electronics, Vol. 47, pp. 1843-1846, 2003.
[14]S. H. Liu, J. M. Hwang, “Ohmic contact to p-type GaN using a novel Ni/Cu scheme”, Applied Surface Science, Vol. 212-213, pp. 907-911, 2003.
[15]C. Y. Hsu, W. H. Lan, “Effect of thermal annealing of Ni/Au ohmic
contact on the leakage current of GaN based light emitting diodes”,
Appl. Phys. Lett., Vol. 83, No. 12, 22 September 2000.
[16]H. Kim, J. M. Le, S. W. Kim, “Modeling of a GaN-based light emitting diode for uniform current spreading”, Appl. Phys. Lett., Vol. 77, No. 12, 18 September 2000.
[17]H. Kim, S. J. Park, H. Hwang, “Effects of current spreading on the performance of GaN-based light emitting diodes”, IEEE Transactions on Electron Devices, Vol. 48, No. 6, June 2001.
[18]H. Kim, S. J. Park, H. Hwang, “Lateral current transport path, a model for GaN-based light emitting diodes: Applications to practical device design”, Appl. Phys. Lett., Vol. 81, No. 7, 12 August 2002.
[19]X. A. Cao, E. B. Stokes, P. Sandvik, “Optimization of current spreading metal layer for GaN/InGaN-based light emitting diodes”, Solid-State Electronics, Vol. 46, pp. 1235-1239, 2002.
[20]M. Shatalov, G. Simin, V. Adivarhan, “Lateral current crowding in deep UV light emitting diodes over sapphire substrates”, Jpn. J. Appl. Phys. Vol. 41, pp. 5083-5087, 2002.
[21]X. Guo, E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light emitting diodes grown on insulating substrates”, Appl. Phys. Lett., Vol. 78, No. 21, 21 May 2001.
[22]X. Guo, E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates”, J. Appl. Phys., Vol. 90, No. 8, 15 October 2001.
[23]A. Ebong, S. Arthur, E. Downey, “Device and circuit modeling of GaN/InGaN light emitting diodes for optimum current spreading”, Solid-State Electronics, Vol. 47, pp. 1817-1823, 2003.
[24]I. Waki, H. Fujioka, M. Oshima, “Low-temperature activation of Mg-doped GaN using Ni films”, Appl. Phys. Lett., Vol. 78, No. 19, 7 May 2001.
[25]I. Waki, H. Fujioka, M. Oshima, “Mechanism for low temperature activation of Mg-doped GaN with Ni catalysts”, J. Appl. Phys., Vol. 80, No. 12, 15 December 2001.
[26]Y. Kamii, I. Waki, H. Fujioka, M. Oshima, “Electrical characteristics of Mg-doped GaN activated with Ni catalysts”, Applied Surface Science, Vol. 190, pp. 348-351, 2002.
[27]I. Waki, H. Fujioka, M. Oshima, “Catalytic effect of Ni for activation of Mg-doped GaN in N2 and N2O”, Journal of Crystal Growth, Vol. 234, pp. 459-462, 2002.
[28]Y. Hagio, H. Sugahara, T. Maruyama, “Interface properties between Ni and p-GaN studied by photoemission spectroscopy”, Jpn. J. Appl. Phys. Vol. 41, pp. 2493-2496, 2002.
[29]Y. Nakagawa, M. Haragughi, “Hydrogen dissociation from Mg-doped GaN”, Jpn. J. Appl. Phys. Vol. 43, No. 1, pp. 23-29, 2004.
[30]E. K. Hill, D. Fruchart, S. Miraglia, “Electronic structure of Ni-H from normal to superabundant vacancies”, Journal of Alloys and Compounds, Vol. 356-357, pp. 169-173, 2003.
[31]Y. Ohba, A. Hatano, “H-atom incorporation in Mg-doped GaN grown by metalorganic chemical vapor deposition”, Jpn. J. Appl. Phys. Vol. 33, pp. L1367-L1369, 1994.
[32]M. Smith, G. D. Chen, “Mechanisms of band-edge emission in Mg-doped p-type GaN”, Appl. Phys. Lett., Vol. 68, No. 14, 1 April 1996.
[33]Y. Okamoto, M. Saito, “First-principles calculations on Mg impurity and Mg-H complex in GaN”, Jpn. J. Appl. Phys. Vol. 35, pp. L807-L809, 1996.
[32]J. Neugebauer, “Gallium vacancies and the yellow luminescence in GaN”, Appl. Phys. Lett., Vol. 69, No. 4, 22 July 1996.
[33]S. J. Pearton, J. W. Lee, C. Yuan, “Minority-carrier-enhanced reactivation of hydrogen-passivated Mg in GaN”, Appl. Phys. Lett., Vol. 68, No. 19, 6 May 1996.
[34]F. J. Sanchez, F. Calle, D. Basak, B. Beaumont, “Yellow luminescence in Mg-doped GaN”, MRS, Vol. 2, No. 28, 12 September 1997.
[35]A. K. Viswanath, E. J. Shin, “Magnesium acceptor levels in GaN studied by photoluminescence”, J. Appl. Phys., Vol. 83, No. 4, 15 February 1998.
[36]U. Kaufmann, M. Kunzer, “Nature of the 2.8 eV photoluminescence band in Mg doped GaN”, Appl. Phys. Lett., Vol. 72, No. 11, 16 March 1998.
[37]C. J. Pan, G. C. Chi, “The doping of GaN with Mg diffusion”, Solid-State Electronics, Vol. 43, pp. 621-623, 1999.
[38]F. Shahedipour, B. W. Wessels, “Investigation of the formation of the 2.8 eV luminescence band in p-type GaN:Mg”, Appl. Phys. Lett., Vol. 76, No. 21, 22 May 2000.
[39]Y. Koide, D. E. Walker Jr, S. Kamiyama, “Simultaneous observation of luminescence and dissociation processes of Mg-H complex for Mg-doped GaN”, J. Appl. Phys., Vol. 92, No. 7, 1 October 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top