跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏志先
研究生(外文):Chih-Hsien Yen
論文名稱:氮化鈦離子感測場效電晶體應用於尿酸酵素之量測與積體化前端檢測電路之研究
論文名稱(外文):Study on the Integrated Front-end Circuit Design for the Uric-acid Measurement Based on Titanium Nitride Ion Sensitive Field Effect Transistor
指導教授:周榮泉周榮泉引用關係
指導教授(外文):Jung-Chuan Chou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:233
中文關鍵詞:遲滯效應溫度效應氮化鈦積體化前端檢測電路尿酸酵素感測元件延伸式閘極離子感測場效電晶體時漂效應
外文關鍵詞:Integrated front-end circuitDrift effectTitanium nitrideExtended gate ion sensitive field effect transisHysteresis effectTemperatrure effectUricase enzyme sensor
相關次數:
  • 被引用被引用:9
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要係針對延伸式閘極離子感測場效電晶體(Extended Gate Ion Sensitive Field Effect Transistor, EGISFET)之酸鹼感測元件為主體,全文由三個主題構成,由氮化鈦(Titanium Nitride, TiN)感測薄膜備製,進而搭配上述感測元件形成TiN-EGISFET之架構。第二主題係針對TiN-EGISFET元件設計適用之積體化前端檢測電路,並藉由國家晶片系統設計中心(CIC)委託台灣積體電路公司TSMC 0.35 μm 2P4M製程加以實現。最後之主題,除量測TiN-EGISFET元件之非理想效應如時漂(Drift)、遲滯(Hysteresis)與溫度效應(Temperature Effect)外,亦針對尿酸(Uricase)酵素感測元件進行探討,利用所設計之前端檢測電路與工業用儀表放大器LT1167量測元件之輸出響應,並比較二者不同電路系統所造成之差異。於本研究中,由酸鹼感測元件TiN-EGISFET之備製,進而實現適用之積體化前端檢測電路IC,最後應用於元件之實際量測。總結而言,本論文由半導體製程沈積TiN薄膜至電路設計、IC實現…等一連貫之研究,並藉著多項國內外研究之成果比較,相信已使本研究更趨於完整。
In this thesis, it emphasizes on the study of the extended gate ion sensitive field effect transistor (EGISFET). The full text can be divided into three parts. In the first topic, it was used the sputtering to prepare the Titanium Nitride (TiN) thin film, and combine the EGISFET forming the TiN-EGISFET structure.
In the second topic, the integrated front-end circuit is designed for the structure of the TiN-EGISFET. Then make use of the National Chip Implementation Center (CIC) to entrust the TSMC 0.35μm 2P4M process of the Taiwan Semiconductor Manufacturing Company Ltd. to carry out the integrated front-end circuit.
Furthermore, discuss the drift, hysteresis, Temperature effects of the TiN- EGISFET devices and the uric-acid enzyme sensor. Measured the response of the devices through the front-end detected circuit and instrumentation amplifier LT1167, then compared the difference caused by two circuit systems.
In this study, from fabrication of the TiN-EGISFET sensor device, to realize the integrated circuit of the front-end detection, be applied in the actual measurement of the sensor finally. Summarize this thesis, the continual research including the TiN thin film deposited by the sputtering, the front-end circuit design and the IC realization…etc. Then compared with research results of the literatures in the conclusion, we believe this thesis will be more complete.
中文摘要 ……………………………………………………….. Ⅰ
英文摘要 ……………………………………………………….. Ⅱ
誌謝 ……………………………………………………….. Ⅳ
目錄 ……………………………………………………….. Ⅴ
表目錄 ……………………………………………………….. VIII
圖目錄 ……………………………………………………….. IX

第一章 緒論
1.1 研究背景..................................... 1
1.2 研究動機…………………………………………….. 3
1.3 研究流程及論文架構……………………………….. 4

第二章 文獻回顧與理論分析
2.1 酵素之簡介………………………………………….. 6
2.1.1 酵素於生物感測器之發展………………………….. 8
2.1.2 尿酸、痛風與尿酸酶(Uricase)酵素……………. 10
2.2 離子感測膜之選擇與製程………………………….. 12
2.2.1 氮化鈦薄膜之型態………………………………….. 13
2.2.2 氮化鈦薄膜製程…………………………………….. 14
2.3 延伸式閘極離子感測場效電晶體………………….. 15
2.3.1 吸附鍵結模型(Site-binding model)………….... 16
2.3.2 延伸式閘極離子場效電晶體之工作原理………….. 19
2.4 參考電極…………………………………………….. 20

第三章 氮化鈦實驗步驟、方法與量測
3.1 氮化鈦感測膜之備製……………………………….. 32
3.1.1 濺鍍之前處理……………………………………….. 32
3.1.2 反應式濺鍍氮化鈦薄膜製程……………………….. 33
3.1.3 氮化鈦之製程參數………………………………….. 33
3.1.4 TiN-EGISFET元件之備製……….……………………. 34
3.2 薄膜表面分析與特性量測系統…………………….. 36
3.3 製程參數對氮化鈦薄膜性質之影響……………….. 40
3.3.1 射頻濺鍍功率之效應……………………………….. 40
3.32 氬氣與氮氣含量比之效應………………………….. 42
3.4 氮化鈦元件感測度之探討………………………….. 45
3.4.1 感測度定義及量測………………………………….. 45
3.4.2 濺鍍功率對感測度之影響………………………….. 46
3.4.3 濺鍍氣體比例對感測度之影響…………………….. 47
3.5 氮化鈦靶材沈積氮化鈦薄膜……………………….. 49

第四章 積體化前端檢測電路之設計與研究
4.1 雙級運算放大器電路之設計與探討……………….. 93
4.1.1 雙級運算放大器之設計…………………………….. 94
4.1.2 常數轉導偏壓電路之設計………………………….. 98
4.1.3 OPA起始電路之設計…………………………………. 99
4.1.4 OPA電路之頻率響應…………………………………. 99
4.2 雙級運算放大器電路之架構與模擬……………….. 100
4.2.1 參數模擬之架構與結果…………………………….. 100
4.3 源極隨耦器之設計與探討………………………….. 102
4.3.1 源極隨耦器之架構與感測原理…………………….. 102
4.3.2 源極隨耦器之電路實現與模擬…………………….. 103
4.4 積體電路架構之佈局及下線……………………….. 105
4.5 前端檢測電路之優劣比較………………………….. 107
4.6 應用設計之源極隨耦器量測TiN-EGISFET………….. 108

第五章 非理想效應之研究
5.1 時漂之定義………………………………………….. 140
5.2 時漂效應之理論探討……………………………….. 141
5.3 時漂量測系統與步驟……………………………….. 143
5.4 時漂效應之量測與討論…………………………….. 144
5.4.1 氮化鈦感測元件之時漂量測……………………….. 144
5.4.2 二氧化錫元件之時漂量測………………………….. 145
5.4.3 TiN與SnO2薄膜之時漂效應比較……………………. 146
5.5 遲滯效應…………………………………………….. 147
5.5.1 遲滯效應之定義與理論探討……………………….. 147
5.5.2 遲滯效應之量測…………………………………….. 148
5.5.3 遲滯效應之結果與討論…………………………….. 148
5.6 溫度效應之量測與討論…………………………….. 149
第六章 尿酸酵素感測元件之研究
6.1 尿酸酵素感測元件之感測原理…………………….. 165
6.2 實驗材料與儀器設備……………………………….. 166
6.3 尿酸酵素感測元件之實驗步驟…………………….. 167
6.4 尿酸酵素感測元件之量測結果與比較…………….. 170
第七章 結果與討論
7.1 氮化鈦薄膜製程之討論…………………………….. 175
7.1.1 本研究之氮化鈦薄膜備製………………………….. 175
7.1.2 氮化鈦薄膜之備製方法比較……………………….. 176
7.1.3 TiN-EGISFET感測元件之酸鹼感測比較…………….. 177
7.2 前端檢測電路—源極隨耦器架構之討論………….. 178
7.2.1 本研究之電路設計與量測結果…………………….. 178
7.2.2 源極隨耦器相關之電路架構與量測結果比較…….. 179
7.2.3 差動式架構之源極隨耦器電路…………………….. 179
7.3 時漂效應與遲滯效應之結果與討論……………….. 181
7.4 尿酸酵素感測元件………………………………….. 183
第八章 未來展望…………………………………………….. 198
參考文獻 …………………………………………………………………………. 200
[1]P. Bergveld, 1970, “Development of an Ion Sensitive Solid-State Device for Neurophysiological Measurement”, IEEE Trans. on Biomedical Engineering BME-17, PP.70-71.
[2]武世香、虞惇,王貴華,1990,化學量傳感器,傳感器技術,第1期,PP.57-62
[3]A. Topkar, R. Lal, 1993, “Effect of Electrolyte Exposure on Silicon Dioxide in Electrolyte-Oxide-Semiconductor Structures”, Thin Solid Films, Vol. 232, PP. 265-270.
[4]B. D. Liu, Y. K. Su, and S. C. Chen, 1989, “Ion-Sensitive Field-Effect Transistor with Silicon Nitride Gate for pH Sensing”, Int. J. Electronics, Vol. 67, PP.59-63.
[5]T. Matsuo and M. Esashi, 1981, “Method of ISFET Fabrication”, Sensors and Actuators, Vol. 1, PP.77-96.
[6]I-Yu Huang, Ruey-Shing Huang, 2002, “Fabrication and Characterization of a New Planar Solid-State Reference”, Thin Solid Films, Vol. 406, PP.255-261.
[7]S. D. Collins, 1993, “Practical Limits for Solid-State Reference Electrodes”, Sensors and Actuators B, Vol. 10, PP.169-178.
[8]Yuri G. Vlasov, Andrey V. Bratov, 1992, “Analytical Applications of pH-IFSETs”, Sensors and Actuators B, Vol.10, PP.1-6.
[9]C. Diekmann, C. Dumschat, K. Cammann, M. Knoll, 1995, “Disposable Reference Electrode”, Sensors and Actuators B, Vol. 24-25, PP.276-278.
[10]S. Caras, J. Janata, 1980, “Field Effect Transistor Sensitive to Penicillin”, Analytical Chemistry, Vol.52, PP.1935-1937.
[11]Keun Yong Park, Sang Bok Choi, Minho Lee, Byung Ki Sohn, Sit Young Choi, 2002, “ISFET Glucose Sensor System with Fast Recovery Characteristics by Employing Electrolysis”, Sensors and Actuators B, Vol. 83, PP.90-97.
[12]C. Cane, A. Gotz, A. Merlos, I. Gracia, A. Errachid, P. Losantos, E. Lora Tamayo, 1996, “Multilayer ISFET Membranes for Microsystems APPlications”, Sensors and Actuators B, Vol. 35-36, PP.136-140.
[13]Pavel Neuzil, 1995, “ISFET Integrated Sensor Technology”, Sensors and Actuators B, Vol. 24-25, PP.232-235.
[14]A. Garde, J. Alderman, W. Lane, 1995, “Development of a pH-sensitive ISFET Suitable for Fabrication in a Volume Production Environment”, Sensors and Actuators B, Vol. 26-27, PP.341-344.
[15]D. L. Harame, L. J. Bousse, J. D. Shott, J. D. Meindl, 1987, “Ion-Sensing Devices with Silicon Nitride and Borosilicate Glass Insulators”, IEEE Transactions on Electron Devices, Vol. ED-34, PP.1700-1707.
[16]M. N. Niu, X. F. Ding, Q. Y. Tong, 1996, “Effect of Two Types of Surface Sites on the Characteristics of Si3N4-gate pH-ISFETs”, Sensors and Actuators B, Vol. 37, PP.13-17.
[17]Chih Ming Sue, Hung Kwei Liao, Jung Chuan Chou. Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 1997, “Study on Si3N4/SiO2 Gate Ion Sensitive Field Effect Transistor”, Proceedings of 1997 Electron Devices and Materials Symposium (EDMS), National Central University, Chung-Li, Taiwan, R.O.C., PP.383-386.
[18]Hung Kwei Liao, Jung Chuan Chou. Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 1997, “Study on the Interface Trap Density of the Si3N4/SiO2 Gate ISFET”, Proceedings of The 3rd International East Asian Conference on Chemical Sensors, Hoam Convention Center, Seoul National University, Seoul Korea, November 5-6, PP.394-400.
[19]Jung Chuan Chou, Chen Yu Weng, Hsjian Ming Tasi, 2002, “Study on the Temperature Effects of Al2O3 gate pH-ISFET”, Sensors and Actuators B, Vol.81, PP.152-157.
[20]L. Bousse, H. H van der Vlekkert, N. F. de Rooij, 1990, “Hysteresis in Al2O3-Gate ISFETs”, Sensors and Actuators B, Vol. 2, PP.103-110.
[21]D. H. Kwon, B. W. Cho, C. S. Kim, B. K. Sohn, 1996, “Effect of Heat Treatment on Ta2O5 Sensing Membrane for Low Drift and High Sensitivity pH-ISFET”, Sensors and Actuators B, Vol.34, PP.441-445.
[22]Jung Chuan Chou, Ying Shin Li, Jung Lung Chiang, 2000, “Simulation of Ta2O5 Gate ISFET Temperature Characteristics”, Sensors and Actuators B, Vol. 71, PP.73-76(SCI).
[23]Jung Chuan Chou, Kai Ye Huang, Jin Sung Lin, 2000, “Simulation of Time Dependent Effects of pH-ISFETs”, Sensors and Actuators B, Vol. 62, PP.88-91(SCI).
[24]Chung Lin Wu, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 1999, “Study on SnO2/Al/SiO2/Si ISFET with a Metal Light Shield”, Materials Chemistry and Physics, Vol. 63, PP.153-156(SCI).
[25]楊恩旭,1998,二氧化錫薄膜應用於離子感測場效電晶體之研究,中原大學,碩士論文。
[26]Hung Kwei Liao, Li Lun Chi, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 1999, “Study on pHPZC and Surface Potential of Tin Oxide Gate ISFET”, Materials Chemistry and Physics, Vol. 59, PP.6-11(SCI).
[27]Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 1999, “Temperature and Optical Characteristics of Tin Oxide Membrane Gate ISFET”, IEEE Transactions on Electron Devices, Vol. 46(12), PP.2278-2281(EI).
[28]Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 2000, “The Influence of Isothermal Annealing on Tin Oxide Thin Film for pH-ISFET Sensor”, Sensors and Actuators B, Vol. 65, PP.23-25(SCI).
[29]Jung Chuan Chou, Jung Lung Chiang, 2000, “Study on the Amorphous Tungsten Trioxide Ion Sensitive Field Effect Transistor”, Sensors and Actuators B, Vol. 66, PP.106-108(SCI)
[30]Jung Lung Chiang, Jung Chuan Chou, Ying Chung Chen, 2001, “Study on the Temperature Effect, Hysteresis and Drift of pH-ISFET Device Based on Amorphous Tungsten Oxide”, Sensors and Actuators B, Vol. 76, PP.624-628(SCI).
[31]Jung Chuan Chou, Ching Nan Hsiao, 2000, “The Hysteresis and Drift Effect of Hydrogenated Amorphous Silicon for ISFET Sensor”, Sensors and Actuators B, Vol. 66, PP.181-183(SCI).
[32]Jung Chuan Chou, Ching Nan Hsiao, 2000, “Drift Behaviour of ISFETs with A-Si:H-SiO2 Gate Insulator”, Materials Chemistry and Physics, Vol. 63(3) , PP.270-273(SCI).
[33]Jung Chuan Chou, Yii Fang Wang, Jin Sung Lin, 2000, “Temperature Effect of A-Si:H pH-ISFET”, Sensors and Actuators B, Vol. 62, PP.92-96(SCI).
[34]Jung Chuan Chou, Yii Fang Wang, 2001, “Temperature Characterisitcs of A-Si:H Gate ISFET”, Materials Chemistry and Physics, Vol. 70, PP.107-111(SCI).
[35]Jung Chuan Chou, Hsjian Ming Tasi, Ching Nan Hsiao, Jin Sung Lin, 2000, “Study and Simulation of the Drift Behaviour of Hydrogenated Amorphous Silicon Gate pH-ISFET”, Sensors and Actuators B, Vol. 62, PP.97-101(SCI).
[36]Jung Lung Chiang, Shiun Sheng Jan, Ying Chung Chen, Jung Chuan Chou, 2000, “Simulation and Study of the pH Sensing for AlN Thin Film”, Proceedings of Abstracts Book of The 8th International Meeting on Chemical Sensors, International Convention Center, Basel, Switzerland, July 2-5, P.400.
[37]Jung Lung Chiang, Shiun Sheng Jan, Ying Chung Chen, Jung Chuan Chou, 2000, “Sensing Characteristics of ISFET Based on AlN Thin Film”, Proceedings of SPIE - The International Symposium on Optoelectronic Materials and Devices Ⅱ, Vol. 4078, Taipei, Taiwan, R.O.C., July 26-28, PP.689-696.
[38]Shiun Sheng Jan, Jung Lung Chiang, Jung Chuan Chou, 2000, “Temperature Effects on PbTiO3 Gate pH-ISFET”, Proceedings of The 2000 International Electron Devices and Materials Symposia (IEDMS), National Central University, Chung Li, Taiwan, R.O.C., December 20-21, PP.242-245.
[39]J. Van der Spiegel, I. Lauks, P. Chan D. Babic, 1983, “The Extended Gate Chemical Sensitive Field Effect Transistor as Multi-Species Microprobe”, Sensor and Actuators B, vol.4, PP.291-298.
[40]Jung Lung Ching, Jung Chuan Chou, Ying Chung Chen, 2001, “Study of the pH-ISFET and EnFET for Biosensor Applications”, Journal of Medical and Biological Engineering, Vol. 21(3), PP.135-146.
[41]蘇演良,陳國英,吳政道,1994,物理蒸著氮化鈦在耐磨元件方面應用之可行性評估, Chinese Journal of materials Science, Vol. 26, no. 2, PP.100-108.
[42]張鼎張,劉柏村,胡榮志,陳紀文,彭仁杰,2002,使用多堆疊的化學氣相沈積Ti/TiN結構增強TiN薄膜的擴散阻障特性,國家奈米元件實驗室奈米通訊,第九卷第二期,PP.13-17。
[43]http://140.114.18.41/87網頁競賽/HOMEPAGE/METALLIZATION/diff1.htm
[44]袁俊傑,楊裕雄,1999,酵素晶片,科學月刊,第357期,PP. 732-738.
[45]呂鋒洲、林仁混,1991,基礎酵素學,經聯出版社,初版,PP. 1-17。
[46]張怡南,2000,生物感測器 生物技術的發展與應用,九州出版社,第三版,PP. 303~320。
[47]L.C. Clark, C. Lyons, 1962, “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery”, Ann. NY. Acad. Sci., Vol. 102, PP. 29-45.
[48]T. C.W. Yeow, M. R. Haskard, D. E. Mulcahy, H. I. Seo, D. H. Kwon, 1997, “A Very Large Intergated pH-ISFET Sensor Array Chip Compatible with Standard CMOS Processes”, Sensors and Actuators B, Vol.44, PP.434-440.
[49]A. Poghossian, J. W. Schultze, M. J. Schoning, 2003, “Multi-Parameter Detection of (Bio-)Chemical and Physical Quantities Using an Identical Transducer Principle”, Sensors and Actuators B, Vol. 91, PP.83-91.
[50]Luo. Xi-Liang, Xu. Jing-Juan, Zhao. Wei, Chen. Hong-Yuan, 2004, “Glucose Biosensor Based on ENFET Doped with SiO2 Nanoparticles”, Sensors and Actuators B, Vol. 97, PP. 249-255.
[51]W. Sant, M. L. Pourciel, J. Launay, T. Do Conto, A. Martinez, P. Temple Boyer, 2003, “Development of Chemical Field Effect Transistor for The Detection of Urea”, Sensors and Actrators B, Vol. 95, PP.309-314.
[52]Hong. Feng, Nilvebrant. Nils-Olof, J. Jonsson Leif, 2003, “Rapid and Convenient Determination of Oxalic Acid Employing A Novel Oxalate Biosensor on The Oxalate Oxidase And SIRE Technology”, Biosensors and Bioelectronics, Vol. 18, PP.1173-1181.
[53]Ni. Rong, Zhang. Xiao Bing, Liu. Wen, Shen. Guo-Li, Yu. Ru-Qin, 2003, “Piezoelectric Quartz Crystal Sensor Array with Optimized Oscillator Circuit for Analys Organic Vapors Mixtures”, Sensors and Actuators B, Vol. 88, PP.198-204.
[54]Wang. Li, Wang. Erkang, 2004, “A Novel Hydrogen Peroxide Sensor Based on Horseradish Peroxidase Immobilized on Colloidal Au Modified ITO Electrode”, Electrochemistry Communications, Vol. 6, PP. 225-229.
[55]劉英俊,1994,酵素工程,中央圖書出版社,第七章。
[56]蘇建雄,1996,細胞及酵素固定技術,生物技術,九州出版社,第十五章。
[57]柯清水,2000,新世紀化工化學大辭典,正文書局,PP. 2096-2097。
[58]李信興、廖桂聲,2002,痛風,書泉出版社,PP.3-89。
[59]Y. U. Zhang, W. D. Shen, R. A. Gu, J. Zhu, R. Y. Xue, 1998, “Amperometric Biosensor For Uric Acid Based on Uricase Immobilized Silk Fibroin Membrane”, Analytical Chimica Acta, Vol. 369, PP.123-128,
[60]M. M. Castillo Ortega, D. E. Rodriguez, J. C. Encinas, M. Plascencia, F. A. Mendez-Velarde, R. Olayo, 2002, “Conductometric uric acid and urea biosensor prepared form electroconductive polyaniline-poly (n-butyl methacrylate) composites”, Sensors and Actuators B, Vol. 85, PP.19-25.
[61]Jung Chuan Chou, Lan Pin Liao, 2004, “Study of TiO2 Thin Films For ISFET Application with RF Sputtering Deposition”, Japanese Journal of Applied Physics, Vol. 1, PP.61-65.
[62]張景學,吳昌崙,1999,半導體製造技術,文京圖書有限公司,PP.17-18。
[63]Beverskog. B., Puigdomenech. I., 1997, “Revised Pourbaix Diagrams For Zinc at 25~300℃”, Corrosion Science, Vol.39, PP.107-114.
[64]http://www.if.uidaho.edu/~vutgikar/che504ece/lecture3.PDF
[65]Douglas J. Wood, 1993, “The Characterization of Particulate Debris Obtained from Failed Orthopedic Implants (A Research Report)”, Material Engineering, Vol.198B, chapter 5.
[66]Y. C. Yang, E. Chang, B. H. Hwang, S. Y. Lee, 2000, “Biaxial Residual Stress States of Plasma- Sprayed Hydroxyapatite Coatings on Titanium Alloy Substrate” Biomaterials, Vol. 21, PP. 1327-1337.
[67]Thornton, Jong. A, 1974, “Influence of Apparatus Geometry and Deposition Conditions on Structure and Topography of Thick Sputtered Coatings”, Journal of Vacuum Science Technology, Vol. 11(4), PP.666-670.
[68]Young Ki Lee, Jung Yeul Kim, You Kee lee, Min Sang Lee, Dong Kun Kim, Duck Yong jin, Tae Hyun Nam, Hyo Jun Ahn, Dong Koo Park, 2002, “Surface Chemistry of Non-Stoichiometric TiNX Films Grown on (100)Si Substrate by DC Reactive Magnetron Sputtering”, Journal of Crystal Growth, Vol.234, PP.498-504.
[69]莊達仁,2002,VLSI製造技術,高立圖書有限公司,PP.200-203。
[70]Jean-Marie Chappe, Nicolas Martin, Guy Terwagne, Jan Lintymer, Joseph Gavoille, 2003, “Water as Reactive Gas to Prepare Titanium Oxynitride Thin Films by Reactive”, Thin Solid Films, Vol. 440, PP.66-73.
[71]http://140.114.18.41/87網頁競賽/HOMEPAGE/逢甲/frame.htm
[72]M. H. Hon, J. L. He, Y. S. Shueh, H. S. Chung., 1989, “Properties of TiN Films Coated by Plasma Assisted Technology”, Proceedings of Sino-Japanese Symposium on Dry Processing for Functional Surface Modification, Hsinchu, Taiwan, P. 10.
[73]P. Bergveld and A. Sibbald, 1988, Analytical and Biomedical Applications of Ion-Selective Field-Effect Transistors, Elsevier Science Publishing Company, New York.
[74]T. Katsube, T. Araki, M. Hara, T. Yaji, Si Kobayashi K. Suzuki, 1986, “A Multi-Species Biosensor with Extended-Gate Field Effect Transistors”, Proceedings of 6th Sensor Symposium, Tsukuba Japan, PP.211-214.
[75]Yin. Li Te, Chou. Jung Chuan, Chung. Wen Yaw, Sun. Tai Ping, Hsiung. Shen Kan, 2001, “Study of Indium Tin Oxide Thin Film For Separative Extended Gate ISFET”, Materials Chemistry and Physics, Vol. 70, PP.12-16.
[76]D. E. Yates, S. Levine, T. W. Healy, 1974, “Site-Binding Model of the Electrical Double layer at the Oxide/Water Interface”, J. Chem. Soc. Faraday Trans. I, Vol. 70, PP. 1807-1818.
[77]牛蒙年、丁辛芳、童勤義,1996,“氧化物-電解溶液界面的表面積吸附模型研究”,半導體學報,第17卷,第6期,6月,PP. 458-463。
[78]L. K. Meixner, S. Koch, 1992, “Simulation of ISFET Operation Based on the Site-Binding Model”, Sensors and Actuators B, Vol. 6, PP.315~318。
[79]E. Gileadi, E. Kirowa-Eisner, J. Penciner, 1975, “Interfacial Electrochemistry, an Experimental Approach”, Addison-Wesley Publish Company, INC., PP.4-6.
[80]J. Janata, 1983, “Electrochemistry of Chemically Sensitive Field Effect Transistors”, Sensors and Actuators, Vol. 4, PP.255-265.
[81]蔣境昇,2002,1×4線性陣列式酸鹼離子感測器之研製,中原大學,碩士論文。
[82]楊藏嶽、楊慶成,1992,電化學及應用,第一章和第三章,中國電機工程學會,台北市。
[83]吳溪煌、田福助,1997,電化學理論與應用,第三章,高立圖書有限公司,台北市。
[84]吳浩青、李永舫,電化學動力學,科技圖書股份有限公司,第八章。
[85]黃鴻吉,2002,以TiN靶材濺鍍擴散阻障層TiNx薄膜及其分析,國立台灣科技大學,碩士論文。
[86]郭曉文,2002,氮化鈦薄膜在Si(111)基板上磊晶成長,國立清華大學,碩士論文。
[87]W. Ensinger, 1998, “Ion Bombardment Effects During Deposition of Nitride and Metal Films”(Invited Review), Surface and Coatings Technology, Vol. 99, PP. 1-13.
[88]Li Te Yin, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 2000, “Separate Structure Extended Gate H+ -Ion Sensitive Field Effect Transistor on A Glass Substrate”, Sensors and Actrators B, Vol. 71, PP. 106-111.
[89]Li Te Yin, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, 2001, “Study of Indium Tin Oxide Thin Film for Separative Extended Gate ISFET”, Materials Chemistry and Physics, Vol. 70, PP.12-16.
[90]汪建民,1998,材料分析,中國材料科學學會,新竹市, PP.305-306。
[91]http://www.ncku.edu.tw/~facility/
[92]廖嵐彬,2003,二氧化鈦酸鹼離子感測場效電晶體元件與積體化讀出電路之研究,國立雲林科技大學,碩士論文。
[93]http://www.linear.com/prod/datasheet.html?datasheet=437
[94]黎振策,2001,氮化鈦感測膜應用在延伸式閘極離子感測場效電晶體,中原大學,碩士論文。
[95]M. Guemmaz, A. Mosser, J. C. Parlebas, 2000, “Electronic Changes Induced by Vacancies on Spectral and Elastic Properties of Titanium Carbides and Nitrides”, Journal of Electron Spectroscopy and Related Phenomena, Vol. 107, PP. 91-101.
[96]W. Ensinger, 1996, “The Influence of Ion Irradiation During Film Growth on the Chemical Stability of Film / Substrate Systems”, Surface and Coatings Technology, Vol. 80, PP. 35-48.
[97]P.Y. Jouan, M.C. Peignon, Ch. Cardinaud, G. Lemperiere, 1993, “Characterisation of TiN Coatings And of The TiN/Si Interface by X-ray Photoelectron Spectroscopy And Auger Electron Spectroscopy”, Applied Surface Science, Vol. 68, PP. 595-603.
[98]I. Le R. Strydom, S. Hofmann, 1991, “The Contribution of Characteristic Energy Losses in The Core-level X-Ray Photoelectron Spectroscopy Peaks of TiN And (Ti, Al)N Studied by Electron Energy Loss Spectroscopy And X-Ray Photoelectron Spectroscopy”, Journal of Electron Spectroscopy and Related Phenomena, Vol. 56, PP.85-103.
[99]C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, 1993, “Handbook of X-ray Photoelectron Spectroscopy”, Perking-Elmer Corporation, Physical Electronics Division.
[100]K. Hamrin, G. Johansson, A. Fahlman, C. Nordling, 1969, “Charge Transfer in Transition Metal Carbides and Related Compounds Studied by ESCA”, J. Phys. Chem. Solids, Vol. 30, PP.1835-1847.
[101]Young Ki Lee, Jung Yeul Kim, You Kee Lee, Min Sang Lee, Dong Kun Kim, Duck Yong Jin, Tae-Hyun Nam, Hyo Jun Ahn, Dong Koo Park, 2002, “Surface Chemistry of Non-Stoichiometric TiNx Films Grown on (100)Si Substrate by DC Reactive Magnetron Sputtering”, Journal of Crystal Growth, Vol. 234, PP. 498-504.
[102]L. A. Cyster, D. M. Grant, K. G. Parker, T. L. Parker, 2002, “The Effect of Surface Chemistry And Structure of Titanium Nitride (TiN) Films on Primary Hippocampal Cells”, Biomolecular Engineering, Vol. 19, PP.171-175.
[103]Qing Ma, Dean R. Walters, Richard A. Rosenberg, 2002, “Electron-Induced Surface Chemistry on TiN in Ultrahigh Vacuum”, Applied Surface Science, Vol. 185, PP.217-225.
[104]Lee. Sang Yul, Kim. Gwang Seok, Hahn. Jun Hee, 2004, “Effect of the Cr Content on the Mechanical Properties of Nanostructured TiN/CrN Coatings”, Surface and Coating Technology, Vol. 177-178, PP. 426-433.
[105]Roubik Gregorian, 1999, Introduction to CMOS OP-AMPs and Comparators, WILEY, New York.
[106]Paul R. Gray, Robert G. Meyer, 1982, “MOS Operational Amplifier Design – A Tutorial Overview”, IEEE Journal of Solid-State Circuit, Vol. SC-17, No.6, PP. 969-982.
[107]Steve Martin, 1999, “A CMOS Monolithic Operational Amplifier”, EECS 413 Laboratory Manual.
[108]周永勤,1998,前置與驅動級CMOS放大器於可攜式醫用儀器之設計於研究,中原大學,碩士論文。
[109]李蒼松,2003,Introduction to Analog Integrated Circuit Design,類比積體電路設計導論課程講義。
[110]李蒼松,2004,II、實作教材,類比積體電路佈局設計課程講義。
[111]Behzad Razavi, 2001, Design of Analog CMOS Integrated Circuits, McGraw- Hill, Boston.
[112]David A. Johns, Ken Martin, 1997, Analog Integrated Circuit Design, John Wiley & Sons, Inc, Toronto.
[113]Phillip E. Allen, Douglas R. Holberg, 2002, CMOS Analog Circuit Design, Second Edition, OXFORD, New York.
[114]B. Palan, F. V. Sanots, J. M. Karam, B. Courtois, M. Husak, 1999, “New ISFET Sensor Interface Circuit for Biomedical Applications”, Sensors and Actuators B, Vol. 57, PP. 63-68.
[115]J. Bausells, J. Carrabina, A. Errachid, A. Merlos, 1999, “Ion-Sensitive Field-Effect Transistors Fabricated in A Commercial CMOS Technology”, Sensors and Actuators B, Vol. 57, PP. 56-62.
[116]L. Ravezzi, P. Conci, 1998, “ISFET sensor coupled with CMOS read-out circuit microsystem”, IEE Electronics Letters, Vol. 34, No. 23, PP. 2234-2235.
[117]Han Jinghong, Cui Dafu, Li Yating, Yu Hao, Cai Xingxia, Zhang Hong, 1996, “On-Line Measurement System Based on Biosensors”, Sensors and Actuators B, Vol. 35-36, PP. 422-426.
[118]Donald A. Neamen, 1997, Semiconductor Physics & Devices-Basic Principles, Second Edition, McGraw-Hill, Boston.
[119]施敏,2002,半導體元件物理與製作技術,國立交通大學出版社,台北。
[120]Dan Clein, 1999, CMOS IC Layout: Concepts, Methodologies, and Tools, Elsevier Science & Technology Books, New York.
[121]Yu Dun, Wei Ya Dong and Wang Gui Hua, 1991, "Time Dependence Response Characteristics of pH-Sensitive ISFET", Sensors and Actuators B, Vol. 3, PP.279-285.
[122]Zhong Yule and Zhao Shouan, Lin Tao, 1994, “Drift Characteristic of pH-ISFET Output”, Chinese Journal of Semiconductors, Vol. 12, No. 15, PP. 838-843.
[123]Shahriar Jamasb, Scott D. Collins, Rosemary L. Smith, 1998, “A Physical Model for Threshold Voltage Instability in Si3N4-Gate H+-Sensitive FET`s (pH ISFET`s)”, IEEE Trans. on Electron Devices, Vol. 45, No. 6, PP. 1239-1245.
[124]S. Jamasb, S. Collins, and R. L. Smith, 1998, “A Physical Model for Drift in pH ISFETs”, Sensors and Actuators B, Vol. 49, PP. 146-155.
[125]王乙方,2001,以電漿輔助化學氣相沈積法備製非晶形矽氫與溶膠凝膠法備製二氧化錫閘極酸鹼離子感測場效電晶體之研究,國立雲林科技大學,碩士論文。
[126]蔡軒名,2001,以非晶形碳氫與非晶形矽氫當作氫離子感測場效電晶體閘極材料及其讀出電路之研究,國立雲林科技大學,碩士論文。
[127]Peter Hein, Peter Egger, 1993, “Drift Behaviour of ISFETs with Si3N4-SiO2 Gate Insulator”, Sensors and Actuators B, Vol. 13-14, PP. 655-656.
[128]R.E.G. Van Hal, P. Bergveld, J.F.J. Engbersen, 1996, “Fabrication and Packaging of Mesa ISFETs”, Sensors and Materials B, Vol. 8, No.7, PP. 455-468.
[129]L. Bousse, P. Bergveld, 1984, “The Role of Buried OH Sites in the Response Mechanism of Inorganic-Gate pH-Sensitive ISFETs”, Sensors and Actuators, Vol. 6, PP. 65-78.
[130]S.Casans, A. E. Navarro, D. Ramirez, E. Castro, A. Baldi, N. Abramove, “Novel Voltage-Controlled Conditioning Circuit Applied to the ISFETs Temporary Drift and Thermal Dependency”, Sensors and Actuators B, Vol. 91, 2003, PP. 11-16.

[131]Silvia Casans, A. Edith Navarro, Diego Ramirez, Jose Pelegri, Antonio Baldi, Natalia Abramova, “Novel Constant Current Driver for ISFET/MEMFETs Characterization”, Sensors and Actuators B, Vol. 2001, PP. 629-633.
[132]L. Bousse, S. Mostarshed, B. van der Schoot, N. F. de Rooij, 1994, “Comparison of the Hysteresis of Ta2O5 and Si3N4 pH-Sensing Insulators”, Sensors and Actuators B, Vol. 17, PP. 157-164.
[133]T. Mikolajick, R. Kuhnhold, and H. Ryssel, 1997, “The pH-Sensing Properties of Tantalum Pentoxide Films Fabricated by Metal Organic Low Pressure Chemical Vapor Deposition”, Sensors and Actuators B, Vol. 44, PP.262-267.
[134]H. Van Den Vlekkert, L. Bousse, N. de Rooij, 1988, “The Temperature Dependence of the Surface Potential at the Al2O3/Electrolyte Interface”, J. Colloid Interface Sci, Vol. 122, PP.336-345.
[135]P. R. Barabash, R. S. C. Cobbold, W. B. Wlodarski, 1987, “Analysis of the Threshold Voltage and Its Temperature Dependence in Electrolyte-Insulator-Semiconductor Field-Effect Transistor (EISFET’s)”, IEEE Transactions on Electron Devices, Vol. ED-34, PP.1271-1282.
[136]A. K. Chu, H. C. Lin, W. H. Cheng, 1997, “Temperature Dependence of Refractive Index of Ta2O5 Dielectric Films”, Journal of Electronic Materials, Vol.26, No.8, PP.889-892.
[137]Stephen Cheng, Pete Manos, 1989, “Effects of Operating Temperature on Electrical Parameters in an Analog Process”, IEEE Circuits and Devices Magazine, PP.31-38.
[138]T. Hoshi, H. Saiki, J. Anzai, 2003, “Amperometric Uric Acid Sensors Based on Polyelectrolyte Multilayer Films”, Talanta, Vol. 61, PP. 363-368.
[139]曾閔楠,2004,離子感測場效電晶體應用於尿酸酵素生物感測元件之製作與研究,國立雲林科技大學,實務專題報告。
[140]F. Vaz, P. Machado, L. Rebouta, J. A. Mendes, S. Lanceros-Mendez, L. Cunha, S.M.C. Nascimento, Ph. Goudeau, J.P. Riviere, E. Alves, A. Sidor, 2002, “Physical and Morphological Characterization of Reactively Magnetron Sputtered TiN Films”, Thin Solid Films, Vol. 420-421, PP. 421-428.
[141]Do-Heyoung Kim, Young Jae Kim, Jun-Hyung Park, Jin Hyeok Kim, 2004 “Preparation of TiN Films by Plasma Assisted Atomic Layer Deposition for Copper Metallization”, Materials Science and Engineering C, Vol. 24, PP. 289-291.
[142]L.A. Cyster, K.G. Parker, T.L. Parker, D.M. Grant, 2004, “The Effect of Surface Chemistry and Nanotopography of Titanium Nitride (TiN) Films on Primary Hippocampal Neurones”, Biomaterials, Vol. 25, PP. 97-107.
[143]S. Wakida, S. Mochiziuki, R. Makabe, A. Kawagara, M. Yamne, S. Takasuka , K. Higashi, 1991, “pH-Sensitive ISFETs Based on Titanium Nitride and Their Application to Battery Monitor”, Proceedings of The 1991 Solid-State Sensors and Actuators-Digest of Technical Papers(IEEE Conference), June 24-27, PP. 222-224.
[144]Yuan-Lung Chin, Jung-Chuan Chou, Zhen-Ce Lei, Tai-Ping Sun, Wen-Yaw Chung, Shen Kan Hsiung, 2001, “Titanium Nitride Membrane Application to Extended Gate Field Effect Transistor pH Sensor Using VLSI Technology”, Japanese Journal of Applied Physics, Vol. 40, PP. 6311-6315.
[145]Lu Xu-Lin, Yuan Hong-Yan, Xiao Dan, 2003, “A Novel pH Electrode Based on Titanium Nitride”, Chemical Journal of Chinese Universities, Vol. 24, PP. 1400-1402.
[146]P. Bergveld, 2003, “Thirty Years of ISFETOLOGY: What Happened in the Past 30 Years and What May Happen in the Next 30 years”, Sensors and Actuators B, Vol. 88, PP. 1-20.
[147]Sohn, Byung Ki, 1994, “Measuring Circuit with A Biosensor Utilizing Ion Sensitive Field Effect Transistors”, United States Patent: 5,309,085.
[148]Jung Chuan Chou, Chen Yu Weng, 2001, “Sensitivity and Hysteresis Effect in Al2O3 Gate pH-ISFET”, Materials Chemistry and Physics, Vol. 71, PP. 120-124.
[149]Jung-Chuan Chou, Yu-Neng Tseng, 2000, “Study on the hysteresis Effect of pH-ISFET Based on Beckman ΦTM 110 (Si3N4 gate pH-ISFET)”, Proceedings of Optoelectronic Materials and Devices II, Vol. 4078, PP. 793-800.
[150]S. Casans, A. E. Navarro, D. Ramirez, E. Castro, A. Baldi, N. Abramova, 2003, “Novel Voltage-Controlled Conditioning Circuit Applied to the ISFETs Temporary Drift and Thermal Dependency”, Sensors and Actuators B, Vol. 91, PP. 11-16.
[151]Jung Chuan Chou, Yu Neng Tseng, 1999, “The Temperature Effect of Si3N4 Gate for the Commercial Beckman ΦTM110 pH ISFET”, Proceedings of The 1999 Annual Conference of The Chinese Society for Materials Science, Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C., December 26-27, (4 pages).
[152]J. Galbán, Y. Andreu, M.J. Almenara, S. de Marcos, J. R. Castillo, 2001, “Direct Determination of Uric Acid in Serum by a Fluorometric-Enzymatic Method based on Uricase”, Talanta, Vol. 54, PP. 847-854.
[153]C. Retna Raj, T. Ohsaka, 2003, “Voltammetric Detection of Uric Acid in the Presence of Ascorbic Acid at a Gold Electrode Modified with a Self-assembled Monolayer of Heteroaromatic Thiol”, Journal of Electroanalytical Chemistry, Vol. 540, PP. 69-77.
[154]G. Minas, J.S. Martins, J.C. Ribeiro, R.F. Wolffenbuttel, J.H. Correia, 2004, “Biological Microsystem for Measuring Uric Acid in Biological Fluids”, Sensors and Actuators A, Vol. 110, PP. 33-38.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top