跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林坤立
研究生(外文):Kun-li Lin
論文名稱:單晶矽太陽電池製程及其頻譜響應之研究
論文名稱(外文):Process Development and Spectral Response Characterization of the Single-Crystalline Silicon Solar Cells
指導教授:林堅楊林堅楊引用關係
指導教授(外文):Jian-yang Lin
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:142
中文關鍵詞:逆金字塔結構頻譜響應單晶矽太陽電池
外文關鍵詞:spectral responseinverted pyramids texturesingle-crystalline silicon solar cells
相關次數:
  • 被引用被引用:33
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文乃研究單晶矽太陽電池之製程技術。逆金字塔結構為相當好之光封存結構,使用p型(100)之矽晶片作為基板,利用KOH蝕刻成逆金字塔結構,並討論蝕刻速率對於異向性蝕刻之影響。另外,在表面塗佈抗反射層,增加光線吸收。本研究太陽電池之雜質摻雜係利用硼片或磷片做高溫固態擴散。由於自然太陽光譜短波長光有較強之照度,且為了吸收短波長光所生成之載子,避免載子到達接面即先行復合,使用高溫固態擴散磷形成淺接面,以吸收短波長之光源。並擴散硼於背部形成後表面電場以利多數載子吸收,反彈少數載子。使用厚膜光阻,運用金屬掀除技術製作之手指狀電極,可避免遮蔽光線。在與電極接觸之矽晶片位置,摻雜高濃度雜質,形成歐姆接觸。所製作之太陽電池以氙燈進行量測,探討淺接面與後表面電場之效果。為配合自然太陽光譜,以單波長光量測太陽電池頻譜響應,開發出配合太陽光頻譜響應之太陽電池,以提升太陽電池效率。
This paper is making a study of single-crystalline silicon solar cell process and technique. The inverted pyramids are fairly good structure for sealing light. The inverted pyramids are etched by KOH solution and to discuss influence of etching rate for anisotropic etching. Furthermore, coating antireflection layer can increase in absorbing light. Boron or phosphorous plate is using to solid state thermal diffusion and doping impurities in solar cell in this research. Illuminance of short wavelength is much more on earth’s surface. In order to absorb carrier that exciting by short wavelength and avoid carrier recombination before arriving junction, the shallow junction is required. Doping boron impurities to form back surface field (BSF). BSF can absorb majority carrier and spring minority carrier. The electrode is made by lift off process that using thick photoresister. The electrode is like “finger” to avoid cover surface. Heavily doping to make ohmic contact where situated between electrode and silicon. Taking Xenon light source to measure solar cell in order to discuss the performance of shallow junction and BSF. In order to match up solar spectrum, measure frequency response by monochromatic light for solar cell. To develop coordination of solar spectrum response can promote efficiency for solar cell.
目錄 頁次
中文摘要 …………………………………………………………….……... i
英文摘要 …………………………………………………………………… ii
誌謝 …………………………………………………………………… iv
目錄 …………………………………………………………………… v
表目錄 …………………………………………………………………… vii
圖目錄 …………………………………………………………………… viii
一、 緒論……………………………………………………………… 1
1.1 概說……………………………………………………………… 1
1.2 研究目的………………………………………………………… 2
二、 基本理論………………………………………………………… 3
2.1 太陽光電能原理………………………………………………… 3
2.1.1 基本原理………………………………………………………… 3
2.1.2 光電流…………………………………………………………… 4
2.1.3 暗電流…………………………………………………………… 4
2.1.4 開路電壓與短路電流…………………………………………… 5
2.1.5 等效電路………………………………………………………… 6
2.1.6 串聯電組與並聯電阻之影響…………………………………… 6
2.2 太陽電池效率轉換……………………………………………… 7
2.3 影響效率之因素………………………………………………… 8
2.3.1 效率損失之探討………………………………………………… 9
2.3.2 高效率化技術…………………………………………………… 9
2.4 文獻探討………………………………………………………… 10
三、 研究方法與實驗………………………………………………… 11
3.1 研究方法………………………………………………………… 11
3.2 主要之儀器設備………………………………………………… 15
3.3 太陽電池之製作………………………………………………… 17
四、 結果與討論……………………………………………………… 21
4.1. 太陽電池製造技術……………………………………………… 21
4.1.1 粗糙化結構之製作……………………………………………… 21
4.1.2 太陽電池接面之形成…………………………………………… 22
4.1.3 金屬掀除技術之探討…………………………………………… 23
4.2 太陽電池量測結果……………………………………………… 23
4.2.1 粗糙化結構之入射角度分析…………………………………… 24
4.2.2 抗反射層塗佈反射頻譜分析…………………………………… 24
4.2.3 不同基材之頻譜響應分析……………………………………… 25
4.2.4 串聯電阻之影響………………………………………………… 25
4.2.5 並聯電阻之影響………………………………………………… 26
4.2.6 接面深度之頻譜響應分析……………………………………… 26
五、 結論……………………………………………………………… 27
參考文獻 …………………………………………………………………… 28
附錄一 …………………………………………………………………… 96
[1]林堅楊,2001,”矽晶太陽電池的技術”,電子月刊,11卷,12期,頁204~210,12月。
[2]W. Hoagland, 1995, “Solar energy”, Sci. Amer, vol. 273, pp. 170-173.
[3]G. R. Davis, 1990, “Energy for planet earth”, Sci Amer, vol. 263, no. 3, pp21-27.
[4]K. N. Amulya and J. Goldemberg, 1990, “Energy for the developing world”, Sci Amer, vol. 263, no.3, pp. 63-71.
[5]A. Freundlich, F. Newman, M.F. Vilela, C. Monier, L. Aguilar, S. Street, 2000, “Development of GaAs space solar cells by high growth rate MOMBE/CBE”, Journal of Crystal Growth 209, pp.481-485
[6]J.A. Carlin, S.A. Ringel, A. Fitzgerald, M. Bulsara, 2001, “High-lifetime GaAs on Si using GeSi bu!ers and its potential for space photovoltaics”, Solar Energy Materials & Solar Cells 66, pp. 621-630
[7]J. K. Rath, 2003, “Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications”, Solar Energy Materials & Solar Cells, vol 76, pp.431–487.
[8]H.L. Hsiao, H.L. Hwang, A.B. Yang, L.W. Chen, T.R. Yew, 1999, “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, vol 142, pp.316–321
[9]D. A. Neamen, “Semiconductor physics & devices”, 2nd edition, McGraw-Hill
[10]林螢光,”光電子學-原理、元件與應用”,全華出版社。
[11]余合興,1987,”電子學原理及應用”,第四版,中央圖書出版社。
[12]B. Streetman, “Solid state electronic devices”, 5th edition, PRENTICE HALL
[13]Jozef Szlufcik, 1997, “Low Cost Industrial Technologies of Crystalline Silicon Solar Cells”, IEEE, vol. 85, pp. 711-715.
[14]J. Szlufcik, 1997, “Low-cost industrial technologies of crystalline silicon solar cells”, IEEE, vol 85, No. 5, pp.711-730
[15]Pallab, Bhattacharya, 1997, Semiconductor Optoelectronic Devices, 2nd edition, prentice Hall.
[16]Johan F. Nija, 1997, “Low Cost Industrial Technologies of Crystalline silicon Solar Cell”, IEEE, vol. 85, pp711-715.
[17]莊嘉琛,”太陽能工程-太陽電池篇”,全華出版社
[18]W. Shockley, 1991, H. J. Queisser, “Detailed balance limit on efficiency of p-n junction solar cells”, phys, vol. 32, pp. 510-519.
[19]T. Tideje, E. 1984, “Limiting efficiency of silicon solar cells”, IEEE, vol ED31, pp 711-716
[20]P. Campbell and M. A. green, 1986, “The limiting efficiency of the silicon solar cells under concentrated sunlight”, IEEE, vol. ED33, pp. 234-239
[21]C. T. Sah, 1982, “Reduction of Solar Cell Efficiency by Edge defects Across the Back surface Field Junction”, Solid State Electronics, vol. 25, pp. 851-858.
[22]M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process”, IEEE, vol. Ed 31
[23]J. Y. Lin, H. L. Hwang and C. Y. Sun, 1995, “Photovoltaic Improvement of single-crystalline Si Space Solar Cell”, National EDMS, p. 167.
[24]M. A. Green, J. Zhao, 1990, “24% efficiency silicon solar cells”, Appl. Phys, vol. 57, pp. 602-604.
[25]C. T. Sah, 1984, “Reduction of Solar Cell Efficiency Across the Back surface Field Junction”, Solid State Electronics, vol. 31, pp. 451-457
[26]余合興,1996,半導體材料與元件,第三版,中央圖書社。
[27]J. Zhao, A. Wang, M. A. Green, 1990, “24% efficient PERL structure silicon solar cells”, IEEE, vol 91, pp.333-335.
[28]J. Zhao, A. Wang, R. Wenham and M. A. Green, 1996, “24% efficient PERL silicon solar cell: Recent improvements in high efficiency silicon cell research”, Solar Energy Material and solar cells, vol 41/42, pp. 87-99.
[29]J. Zhao, A. Wang, M. A. Green and S. R. Wenham, 1991, “Improvements in silicon solar cell performance”, IEEE, vol 90, pp. 399~401.
[30]J. Zhao, A. Wang, M. A. Green, 2001, “24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates”, Solar Energy Material and solar cells, vol 66, pp. 27-36
[31]A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, A. Wang, 1999, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells”, optics communications, vol 172, pp.139-151
[32]L. M. Doeswijk, H. H. C. de Moor, D. H. A. Blank, H. Rogalla, 1999, “passivating TiO2 coating for silicon solar cells by pulsed laser deposition”, phys, pp.409-411.
[33]M. P. Thekaeara, 1974, “Data on Incident Solar Energy”, Suppl. Proc. Zoth. Annu. Meet. Inst. Environ. Sci, p. 21.
[34]H. L. Hwang, Jian-Yang Lin, and C. y. sun, 1994, “Research and Development of High Efficiency Space Silicon Solar Cells”, 2nd Conference on Space Technology Research, pp. 337-341.
[35]J. Knobloch, S. W. Glunz, 1996, “Solar cell with efficiencies above 21% processed from CZ grown silicon” 25th PVSC, pp. 13-17.
[36]張勁燕,2000,半導體製程設備。
[37]J. Y. Lin, Annual report of NSC85-2313-E-224-001, Nov 1996.
[38]M. A. Green, 1987, “high Efficiency Silicon Solar Cells”, Trans tech Publication, USA.
[39]陳俊合,2003,葡萄糖微型生物感測器之研製,國立雲林科技大學電子所碩士論文。
[40]Jorn Rostalski, Dieter Meissner, 2000, “Monochromatic versus solar efficiencies of organic solar cells”, Solar Energy Material & Solar Cells, pp87-95.
[41]J.S.C. Prentice, 2001, “Spectral response of a-Si:H p-I-n solar cells”, Solar Energy Materials & Solar Cells, vol. 69, pp. 303-314.
[42]M. A. Green, A. W. Blakers, J. Shi, E. M. Keller, IEEE, vol. ED31, 1993, p. 271.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊