跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 11:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉士瑜
研究生(外文):Shuu-ru Liu
論文名稱:奈米碳管之催化生長及其特性研究
論文名稱(外文):Study on the Catalytic Growth and the Properties of the Carbon Nanotubes
指導教授:林堅楊林堅楊引用關係
指導教授(外文):Jian-Yang Lin
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:228
中文關鍵詞:奈米碳管催化劑奈米矽化物穿透式電子顯微鏡
外文關鍵詞:CatalystNano-silicaCarbon nanotubeHRTEM
相關次數:
  • 被引用被引用:3
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本工作藉由熱蒸鍍機系統沉積400Å厚度金屬催化劑(鎳、殷鋼)薄膜在(自然氧化、3000Å)SiO2/Si基板上,研究發現催化劑分佈密度與粒徑大小會受到SiO2厚度影響與金屬催化劑薄膜的材料。藉由各種酸鹼溶液浸泡奈米碳管的過程中,已研究出酸鹼溶液對奈米碳管的效應。藉由HRTEM與EDS觀測奈米碳管結構,發現管狀結構中的奈米矽化物可改善觀測結果。在催化劑方面,發現雙合金的催化劑可以增加成長小尺寸及單壁奈米管的機率。在成長機制方面,發現在管壁結構中的奈米矽化物與催化劑被包覆在奈米碳管中空的成長機制。在準備奈米碳管試片中,發現超音波震洗機的震盪時間影響分散奈米碳管的程度。
In this work using the thermal evaporator was deposited the metal catalyst (Nickel and Invar) of 400Å on the (native and 3000Å) SiO2/Si substrate. It was found that the distribution and grain size of the metal catalyst and structure of the grown CNTs depend on the SiO2 thickness and the material of the metal catalyst film. By immersed the CNTs on the various solutions were found the effects of various immersion solutions to the CNT structure have been studies. Using the HRTEM observation and EDS analysis were found the nano-silica structure on the tubular structure can improve the HRTEM observation of the CNT structure. In catalyst, it was found the Bi-metal catalysts can enhance the growth of small-size CNTs. In growth mechanism, it was found the growth mechanism of the nano-silica structure and the catalysts inside the CNTs have been proposed. In preparation the HRTEM specimen, it was found the effects of the vibration time of the ultrasonic cleaner to the dispersion of the CNTs were examined.
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
一、 諸論………………………………………………..…….. 1
1.1 前言……………………………………………………… 1
1.2 本研究之目的…………………………………………… 2
二、 文獻回顧………………………………………………… 3
2.1 發展歷史………………………………………………… 3
2.2 奈米碳管之結構………………………………………… 4
2.2.1 奈米碳管之幾何結構…………………………………… 4
2.2.2 奈米碳管之分類………………………………………… 6
2.3 奈米碳管之成長機制…………………………………… 8
2.3.1 一般之成長機制………………………………………… 8
2.3.2 奈米纖維之成長機制…………………………………… 10
2.3.3 多壁奈米碳管之成長機制……………………………… 11
2.3.4 單壁奈米碳管之成長機制……………………………… 12
2.3.5 分支結構奈米碳管之成長機制………………………… 14
2.4 奈米碳管之特性………………………………………… 15
2.4.1 奈米碳管之電子特性…………………………………… 15
2.4.2 奈米碳管之機械特性…………………………………… 16
2.4.3 奈米碳管之熱特性……………………………………… 16
2.4.4 奈米碳管之場發射特性………………………………… 17
2.5 催化劑之製備…………………..…………..…………… 19
2.5.1 薄膜金屬催化劑………….…………..…………………. 20
2.5.2 厚金屬催化劑…………………………………………… 21
2.5.3 濕式催化劑…………………………………………….…. 22
2.5.4 溶膠凝膠催化劑……………………………………….... 23
2.6 奈米碳管之合成方法…………………………………… 24
2.6.1 弧光放電法……………………………………………… 24
2.6.2 石墨雷射熱昇華法……………………………………… 24
2.6.3 電漿增強化學氣相沉積法……………………………… 25
2.7 奈米碳管之後制處理…………………………………… 28
2.7.1 純化……………………………………………………… 28
2.7.2 穩定化…………………………………………………… 29
三、 實驗方法………………………………………………… 30
3.1 摘要……………………………………………………… 30
3.2 實驗藥品與耗材………………………………………… 31
3.3 主要之儀器設備………………………………………… 35
3.4 實驗流程與步驟………………………………………… 39
四、 結果與討論……………………………………………… 47
4.1 金屬催化劑之結構分析………………………………… 47
4.2 奈米碳管之酸鹼化分析………………………………… 51
4.3 奈米碳管之幾何結構分析……………………………… 57
五、 結論……………………………………………………… 61
六、 未來研究方向…………………………………………… 62

參考文獻 …………………………………………………………… 63
附錄一 …………………………………………………………… 143
作者簡歷 ……………………………………………………………. 231
[1]Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE, 1985, “C60: Buckyminsterfullerene”, Nature, vol. 318, pp. 162-163.
[2]Iijima S, 1991, “Helical microtubules of graphitic carbon”, Nature, vol. 354, pp.56-58.
[3]A.G. Mamalis, L.O.G. Vogtländer, A. Markopoulos, 2004, “Nanotechnology and nanostructured materials: trends in carbon nanotubes”, Precision Engineering, vol. 28, pp. 16-30.
[4]洪昭南,徐逸明,王宏達,2002,“奈米碳管結構及特性簡介”,化工月刊,49卷,1期,頁23-32。
[5]www.the-scientist.com/yr1997/ jan/index_970106.htm
[6]Drexler KE,1992 , Nanosystems: molecular machinery, manufacturing and computation, Wiiley, New York.
[7]Bonard JM, Kind H, Stöckli T, Nilsson LO, 2001, “Field emission from carbon nanotubes: the first five years”, Solid-State Electronics, vol. 45, pp. 893-914.
[8]Cohen ML, 2001, “Nanotubes, nanoscience, and nanotechnology”, Mater Sci. Eng., vol. 15, pp. 1-11.
[9]Erik T Thostenson,Zhifeng Ren, Tsu-Wei Chou, 2001, “Advances in the science and technology of carbon nanotubes and their composites: A review”, Composites Science and Technology, vol. 61, pp. 1899-1912.
[11]張秋萍,2003,微波電漿輔助化學氣相沉積法合成碳奈米管之研究,中原大學,碩士論文。
[12]DH Oh, YH Lee, 1998, “Stability and cap formation mechanism of single-walled carbon nanotubes”, Physical Review B, vol. 58, pp. 7407-7411.
[13]M Terrones, WK Hsu, HW Kroto, DRM Walton, 1998, “Nanotube: A Revolution in Materials Science”, Topics in Current Chemistry, vol. 199, pp. 1.
[14]N. M. Rodriguez, A. Chambers, R. T. K. Baker, 1995, Langmuir, vol. 11, pp. 3862.
[15]M. Endo, Y. A. Kim, T. Hayashi, Y. Fukai, 2002, “Structural characterization of cup-stacked-type nanofibers with an entirely hollow core”, APPLIED PHYSICS LETTERS, vol. 80, pp. 1267-1269.
[16]Kenneth B. K. Teo, Charanjeet Singh, Manish Chhowalla, William I. Milne, 2003, “Catalytic Synthesis of Carbon Nanotubes and Nanofibers”, Encyclopedia of Nanoscience and Nanotechnology, vol. x, pp. 1-22.
[17]Iijima S, T. Ichihashi, 1993, “Single-shell Carbon Nanotubes of 1-nm Diameter”, Nature, vol. 363, pp. 63.
[18]D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Saroy, J. Vazguez, R. Beyers, 1993, “Cobalt-Catalyzed Growth of Carbon Nanotubes with Single-Atomic-Layerwalls”, Nature, vol. 363, pp.605.
[19]Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, and T. Hayashi, 1993, “Interlayer spacings in carbon nanotubes”, Phys. Rev. B, vol. 48, pp. 1907.
[20]M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C.-H. Kiang, M. S. Dresselhaus, 1997, “Stacking Nature of Graphene Layers in Carbon Nanotubes and Nanofibres”, J. Phys. Chem. Solids, vol. 58, pp. 1707-1712.
[21]C.-H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus, 1998, “Size Effects in Carbon Nanotubes”, Phys. Rev. Lett., vol. 81, pp. 1869-1872.
[22]M. S. Dresselhaus, M. Endo, 2001, “Carbon Nanotubes Synthesis, Structure, Properties and Applications”, Springer-Verlag, pp. 11, New York.
[23]M. Endo, S. Iijima, M. S. Dresselhaus, 1996, “Carbon Nanotubes.” Elsevier Science, Oxford.
[24]T.W. Odom, J.L. Huang, P. Kim and C.M. Lieber, 1998, “Atomic Structure and Electronic Properties of Single-walled Carbon Nanotubes”, Nature, vol. 391, pp. 62.
[25]www.lps.u-psud.fr/Collectif/gr_27/research/nanotubes/nanotube.htm
[26]Kaylene Atkinson, Siegmar Roth, Michael Hirscher, 2002, “Carbon nanostructures: An efficient hydrogen storage medium for fuel cells?”, Fuel Cells Bulletin, vol. 38, pp. 9-12.
[27]B. Chen, G. Parker, J. Han, M. Meyyappan, A. M. Cassell, 2002, “Heterogenous Single Walled Carbon Nanotube Catalyst Discovery and Optimization”, Chem. Mater., vol. 14, pp. 1891-1896.
[28]Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen, Z. F. Ren, 2002, “Growth of Aligned Carbon Nanotubes with Controlled Site Density”, Appl. Phys. Lett., vol. 80, pp. 4018-4020.
[29]J. F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Konya, A. Fonseca, C. Laurent, J. B. Nagy, 2000, “Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method”, Chem. Phys. Lett., vol. 317, pp. 83.
[30]S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, 1999, ”Model of Carbon Nanotube Growth Through Chemical Vapor Deposition”, Chem. Phys. Lett., vol. 315, pp. 25.
[31]R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, R. J. Waite, 1972, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene”, J. Catal., vol. 26, pp. 51.
[32]R. T. K. Baker, P. S. Harris, R. B. Thomas, R. J. Waite, 1973, “Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene”, J. Catal., vol. 30, pp. 86.
[33]Tibbetts, G. G., 1983, “Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes”, Appl. Phys. Lett., vol. 42, pp. 666–668.
[34]A. Fonseca, K. Hernadi, P. Piedigrosso, JF Colomer, others, 1998, “Synthesis of single and multi-wall nanotubes over supported catalyst”, Appl. Phys. A, vol. 67, pp. 11-22.
[35]Frederik Neuwahl, Paolo Foggi, Robert G. Brown, 2000, “Sub- picosecond and picosecond dynamics in the S1 state of [2,2''-bipyridyl]-3,3''-diol by UV-visibletransient absorption spectroscopy”, Chem. Phys. Lett., vol. 319, pp. 157-163.
[36]A. Oberlin, M. Endo, and T. Koyama, 1976, “High resolution electron microscope observations of graphitized carbon fibers”, Carbon, vol. 14, pp. 133.
[37]T.Baird, J.R.Fryer, B.Grant, 1972, “Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 7000℃”, Carbon, vol. 12, pp. 591-602.
[38]Dingyong Zhong, Shuang Liu, Guangyu Zhang, E. G. Wang, 2001, “Large-scale well aligned carbon nitride nanotube films: low temperature growth and electron field emission”, Journal of Applied Physics, Vol. 89, pp. 5939-5943.
[39]Tibbetts, G. G., 1984, “Why are carbon filaments tubular?” J. Cryst. Growth, vol. 66, pp. 632–638.
[40]H. J. Dal, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, 1996, “Single-Wall Nanotubes Produced By Metal-Catalyzed Disproportionation of Carbon Monoxide.”, Chemical Physics Letters, vol. 260, pp. 471-475.
[41]Rodriguez N M, Chambers A, Baker R T K., 1995, “Catalytic Engineering of carbon nanostructures”, Langmuir, vol. 11, pp. 3862.
[42]Rodriguez N M.,1993, “A review of catalytically grown carbon nanofibers”, J Mater Res, vol. 8, pp. 3233.
[43]E. Boellaard, P. K. Debokx, A. Kock, J. W. Geus, 1985, ” The formation of filamentous carbon on iron and nickel catalysts. III. Morphology”, J. Catal., vol. 96, pp. 481-490.
[44]Chambers A, Rodriguez N M,Baker R T K., 1996, “Influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposition of ethylene”, J Mater Res, vol. 11, pp. 430.
[45]Krishnankutty, N.; Rodriguez, N. M.; Baker, R. T. K., 1996, “Effect of Copper on the Decomposition of Ethylene over an Iron Catalyst”, J. Catal., vol. 158, pp.217-277.
[46]A. Chambers, C. Park, R. T. K. Baker, N. M. Rodriguez, 1998, “Hydrogen Storage in Graphite Nanofibers”, J. Phys. Chem. B, vol. 102, pp. 4253.
[47]Kawaguchi M, Nozaki K, Motojima S., 1992, “A growth mechanism of regularly coiled carbon fibers through acetylene pyrolysis”, Journal of Crystal Growth, vol. 118, pp. 309-313.
[48]Park, C., Engel, E. S., Crowe, A., Gilbert, T. R. Rodriguez, N. M., 2000, “Use of Carbon Nanofibers in the Removal of Organic Solvents from Water”, Langmuir, vol. 16, pp. 8050-8056.
[49]C Singh, T Quested, C B Boothroyd, P Thomas, I A Kinloch, A I Abou-Kandil, A H Windle, 2002, “Synthesis and Characterization of Carbon Nanofibers produced by the floating Catalyst Method”, J Phys. Chem. B, vol. 106, pp. 10915-10922.
[50]H. Terrones, T. Hayashi, M. Munoz-Navia, M. Terrones, Y. A. Kim, N. Grobert, R. Kamalakaran, J. Dorantes-Davila, R. Escudero, M. S. Dresselhaus, M. Endo, 2001,” Graphitic cones in palladium catalysed carbon nanofibres”, Chem. Phys. Lett., vol. 343, pp. 241-250.
[51]Nolan, P.E., D.C. Lynch and A.H. Cutler, 1998, “Carbon Deposition and Hydrocarbon Formation on Group VIII Metal Catalysts”, J. Phys. Chem. B, vol. 102, pp. 4165-4175
[52]L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B. Chen, J. Han, and M. Meyyappan, 2002, “Growth of Multiwall Carbon Nanotubes in an Inductively Coupled Plasma Reactor”, Journal of Applied Physics, Vol. 91, pp. 6027-6033.
[53]H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, R. E. Smalley, 1985, “C60 BUCKMINSTERFULLERENE”, Nature, vol. 318, pp. 162.
[54]J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, R. E. Smalley, 1998, ”Catalytic Growth of Single Wall Carbon Nanotubes from Metal Particles”, Chem. Phys. Lett., vol. 296, pp. 195.
[55]Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, 1998, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass”, Science, vol. 282, pp. 1105-1107.
[56]H. J. Dai, J. Kong, C. W. Zhou, N. Franklin, T. Tombler, A. Cassell, S. S. Fan, and M. Chapline, 1999, ” Controlled chemical routes to nanotube architectures, physics, and devices”, J. Phys. Chem. B, vol. 103, pp. 11246.
[57]A. Kukovecz, Z. Konya, N. Nagaraju, I. Willems, A. Tamasi, A. Fonseca, J. B. Nagy, I. Kiricsi, 2000, ”Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas”, Phys. Chem. Chem. Phys., vol. 2, pp. 3071-3076.
[58]V. Ivanov, J. B. Nagy, P. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Vantendeloo, S. Amelinckx, J. Vanlanduyt, 1994, “The study of carbon nanotubes produced by catalytic method.”, Chem. Phys. Lett., vol. 223, pp. 329.
[59]P. Piedigrosso, Z. Konya, J. F. Colomer, A. Fonseca, G. Van Tendeloo, J. B. Nagy, 2000, “Production of differently shaped multi-wall carbon nanotubes using various cobalt supported catalysts” Phys. Chem. Chem. Phys., Vol. 2, pp. 163.
[60]L. F. Sun, J. M. Mao, Z. W. Pan, B. H. Chang, W. Y. Zhou, G. Wang, L. X. Qian, S. S. Xie, 1999, “Growth of straight nanotubes with a cobalt–nickel catalyst by chemical vapor deposition”, Appl. Phys. Lett., vol. 74, pp. 644.
[61]H. J. Dai, 2000, “Controlling Nanotube Growth”, Phys. World, vol. 13, pp. 43-47.
[62]S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy, 1994, “A Formation Mechanism For Catalytically Grown Helix-Shaped Graphite Nanotubes”, Science, vol. 265, pp. 635-639.
[63]C. J. Lee, J. Park, 2000, “Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition”, Appl. Phys. Lett., vol. 77, pp. 3397.
[64]W. Z. Li, J. G. Wen, Y. Tu, Z. F. Ren, 2001, “Effect of Gas Pressure on the Growth and Structure of Carbon Nanotubes by Chemical Vapor Deposition”, Appl. Phys. A, vol. 73, pp. 259-264.
[65]Y. Li, J. Liu, Y. Q. Wang, Z. L. Wang, 2001, “Preparation of monodispersed Fe-M0 nanoparticles as the catalyst for CVD synthesis of carbon nanotubes”, Chem. Mater., vol. 13, pp. 1008-1014.
[66]Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, H. J. Dai, 2001, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes”, J. Phys. Chem. B, vol. 105, pp. 11424-11431.
[67]C. L. Cheung, A. Kurtz, H. Park, C. M. Lieber, 2002, “Diameter-controlled synthesis of carbon nanotubes”, J. Phys. Chem. B , vol. 106, pp. 2429-2433.
[68]J. F. Colomer, G. Bister, I. Willems, Z. Konya, A. Fonseca, G. Van Tendeloo, and J. B. Nagy, 1999, “Synthesis of single-wall carbon nanotubes by catalytic decomposition of hydrocarbons”, Chem. Commun., pp. 1343-1344.
[69]J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J. C. Charlier, 2001, “Root-growth mechanism for single-wall carbon nanotubes”, Phys. Rev. Lett., vol. 87, pp. 27.
[70]W. E. Alvarez, B. Kitiyanan, A. Borgna, D. E. Resasco, 2001, “Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO”, Carbon, vol. 39, pp.547-558.
[71]L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, 2001, “Multilayered Metal Catalysts for Controlling the Density of Single Walled Carbon Nanotube Growth”, Chem. Phys. Lett., vol. 348, pp.368-374.
[72]A. Chambers, N. M. Rodriguez, R. T. K. Baker, 1999, “Further Studies on the Interaction of Graphite Nanofibers with Hydrogen”, J. Phys. Chem B., vol. 103, pp. 10572-10581.
[73]A. Chambers, N. M. Rodriguez, R. T. K. Baker, 1996, “Influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposition of ethylene”, J. Mater. Res., vol. 11, pp. 430.
[74]B. C. Satishkumar, P. J. Thomas, A. Govindaraj, C. N. R. Rao, 2000, “Y-junction carbon nanotubes”, Appl. Phys. Lett., vol. 77, pp. 2530.
[75]J. Li, C. Papadopoulos, J. Xu, 1999, “Highly-ordered carbon nanotube arrays for electronics applications”, Nature, vol. 402, pp. 253.
[76]L.P. Biro, R. Ehlich, Z. Osvath, A. Koos, Z.E. Horvath, J. Gyulai, J.B. Nagy, 2002, “Room temperature growth of single-wall coiled carbon nanotubes and Y-branches”, Materials Science and Engineering C, vol. 19, pp. 3-7.
[77]JS Suh, KS Jeong, J. S. Lee, I. Han, 2002, "Study of Field Screen Effect of Highly Orderded Carbon Nanotubes Arrays", Appl. Phys. Lett. vol. 80, pp. 2392-2394.
[78]RH Fowler, LW Nordheim, 1928, “Electron emissionin intense electric fields”, Proc. R. Soc. Lond. A, vol. 119, pp. 173.
[79]M. Sveningsson, M. Jönsson, R. E. Morjan, O. Nerushev, F. Rohmund, E. E. B. Campbell, “Field and Light Emission from Multi-Walled Carbon Nanotubes”.
[80]Quanshui Zheng, Jefferson Z. Liu, Qing Jiang, 2002, “Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation”, PHYSICAL REVIEW B, vol. 65, pp. 245409.
[81]Y. Ando, X. Zhao, H. Shimoyama, G. Sakai, K. Kaneto, 1999, “Physical properties of multiwalled carbon nanotubes”, Journal of Inorganic Materials, vol. 1, pp. 77-82.
[82]O.Gröning, O.M.Küttel, Ch. Emmenegger, P.Gröning, L.Schlapbach, 2000, “Field emission properties of carbon nanotubes”, J. Vac. Sci. Techn. B, vol. 12 , pp. 665.
[83]王宏達,2001,奈米碳管的成長與分析, 國立成功大學,碩士論文
[84]R. Saito, G. Dresselhaus, M. S. Dresselhaus, 1993, “Electronic structure of double-layered graphene tubules”, J. Appl. Phys., vol. 73, pp. 494-500.
[85]P. Calvert, 1999, “Nanotube composites: A recipe for strength”, Nature, vol. 399, pp. 210.
[86]Jean-Marc Bonard, Jean-Paul Salvetat, Thomas Stöckli, László Forró, André Châtelain, 1999, “FIELD EMISSION FROM CARBON NANOTUBES: A COMPARATIVE STUDY”.
[87]J. Hone, M. Whitney, C. Piskoti, A. Zettl, 1999, “Thermal conductivity of single-walled carbon nanotubes”, Phys. Rev. B, vol. 59, pp. R2514.
[88]P. Kim, L. Shi, A. Majumdar, P. L. McEuen, 2001, “Thermal Transport Measurements of Individual Multiwalled Nanotubes”, Phys. Rev. Lett., vol. 87, pp. 215502.
[89]Y, Tong, C. Liu, P. X. Hou, H. M.Cheng, N. S. Xu, J. Chen, 2002, “Field emission from aligned multi-walled carbon nanotubes”, Physica B, vol. 323, pp. 156-157.
[90]Bo Gan, J. Ahn, Q. Zhang, Q.-F. Huang, C. Kerlit, S. F. Yoon, Rusli, V. A. Ligachev, X.-B. Zhang, W.-Z. Li, 2000, “Topological structure of Y-junction carbon nanotubes”, Mater. Lett., vol. 45, pp. 315
[91]A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley, 1995, “Unraveling nanotubes: field emission from an atomic wire”, Science, vol. 269, pp. 1550.
[92]W. A. de Heer, A. Châtelain, D. Ugate, 1995, “A Carbon Nanotube Field-Emission Electron Source, Science”, Science, vol. 270, pp. 1179-1180.
[93]I. T. Han, H. J. Kim, Y. J. Park, N. Lee, J. E. Jang, J. W. Kim, J. E. Jung, J. M. Kim, 2002, “Fabrication and characterization of gated field emitter arrays with self-aligned carbon nanotubes grown by chemical vapor deposition”, Appl. Phys. Lett., vol. 81, pp. 2070.
[94]M. A. Guillorn, A. V. Melechko, V. I. Merkulov, E. D. Ellis, C. L. Britton, M. L. Simpson, D. H. Lowndes, L. R. Baylor, 2001, “Operation of a gated field emitter using an individual carbon nanofiber cathode”, Appl. Phys. Lett., vol. 79, pp. 3506.
[95]R. T. K. Baker, 1989, “Catalytic Growth of Carbon Filaments”, Carbon, vol. 27, pp. 315-323.
[96]N. M. Rodriguez, 1993, “A Review of Catalytically Grown Carbon Nonofibers”, J. Mater. Res., vol. 8, pp. 3233.
[97]M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, W. I. Milne, 2001, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition”, J. Appl. Phys., vol. 90, pp. 5308.
[98]C. Bower, O. Zhou, W. Zhu, D. J. Werder, S. H. Jin, 2000, “Nucleation and Growth of Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition”, Appl. Phys. Lett., vol. 77, pp. 2767 .
[99]J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. I. Cho, K. S. Nam, 2001, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays”, Appl. Phys. Lett., vol. 78, pp. 901.
[100]M. Su, B. Zheng, J. Liu, 2000, “A Scalable CVD Method for the Synthesis of Single Walled Carbon Nanotubes with High Catalyst Productivity”, Chem. Phys. Lett., vol. 322, pp. 321-326.
[101]B. Kitiyanan, W. E. Alvarez, J. H. Harwell, D. E. Resasco, 2000, “Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts”, Chem. Phys. Lett., vol. 317, pp. 497.
[102]S. M. Sze, 1998, “VLSI Technology,” 2nd ed., p. 309. McGraw-Hill, New York.
[103]K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, D. G. Hasko, 2002, “Field emission from dense, sparse and patterned Arrays of Carbon Nanotubes”, Appl. Phys. Lett., vol. 80, pp. 2011.
[104]A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, S. Jin, 2000, “In -Situ grown Carbon Nanotube Array with Excellent Field Emission Characteristics”, Appl. Phys. Lett., vol. 76, pp. 3813.
[105]T. de los Arcos, F. Vonau, M. G. Garnier, V. Thommen, H. G. Boyen, P. Oelhafen, M. Duggelin, D. Mathis, R. Guggenheim, 2002, “Influence of iron–silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition”, Appl. Phys. Lett., vol. 80, pp. 2383-2385.
[106]J. M. Bonard, N. Weiss, H. Kind, T. Stockli, L. Forro, K. Kern, A. Chatelain, 2001, “Tuning the field emission properties of patterned carbon nanotube films”, Adv. Mater., vol. 13, pp. 184.
[107]V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, E. Voelkl, 2000, “Patterned Growth of Individual and Multiple Vertically-Aligned Carbon Nanotubes”, Appl. Phys. Lett., vol. 76, pp. 3555.
[108]M. P. Siegal, D. L. Overmyer, P. P. Provencio, 2002, “Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition”, Appl. Phys. Lett., vol. 80, pp. 2171.
[109]J. Kong, A. M. Cassell, H. J. Dai, 1998, “Chemical Vapor Deposition of Methane for Single-Walled Carbon Nanotubes”, Chem. Phys. Lett., vol. 292, pp. 567.
[110]R. T. K. Baker, J. R. Alonzo, J. A. Dumesic, D. J. C. Yates, 1982, “Effect of the Surface State of Iron on Filamentous Carbon Formation”, J. Catal., vol.77, pp. 74.
[111]A. M. Cassell, S. Verma, L. Delzeit, M. Meyyappan, J. Han, 2001, “Combinatorial Optimization of Heterogeneous Catalysts used in the Growth of Carbon Nanotubes”, Langmuir, vol. 17, pp. 260-264.
[112]Z. P. Huang, J. W. Wu, Z. F. Ren, J. H. Wang, M. P. Siegal, P. N. Provencio, 1998, “Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition”, Appl. Phys. Lett., vol. 73, pp. 3845.
[113]V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, M. L. Simpson, E. Voelkl, 2001, “Shaping carbon nanostructures by controlling the synthesis process”, Appl. Phys. Lett., vol. 79, pp. 1178.
[114]U. Gonser, A. Mooradian, K. A. Muller, M. B. Panish, H. Sakaki, 1988 “Graphite Fibers and Filaments”, Springer-Verlag, vol. 5, p. 382.
[115]C. Emmenegger, P. Mauron, A. Zuttel, C. Nutzenadel, A. Schneuwly, R. Gallay, L. Schlapbach, 2000, “Carbon Nanotubes Synthesized on Metallic Substrates”, Appl. Surf. Sci., vol. 162, pp. 452.
[116]H. Kind, J. M. Bonard, C. Emmenegger, L. O. Nilsson, K. Hernadi, E. Maillard-Schaller, L. Schlapbach, L. Forro, K. Kern, 1999, “Patterned films of nanotubes using microcontact printing of catalysts”, Adv. Mater., vol. 11, pp. 1285.
[117]http://www.chm.bris.ac.uk/pt/diamond/jamespthesis/chapter1_files/image009.gif

[118]http://www.mines.u-nancy.fr/wwwlsgs/diamant/reactor_principle.jpg

[119]Yakobson BI, Smalley RE, 1997, “Fullerene nanotubes: C 1.000.000 and beyond”, Am Sci., vol. 85, pp. 324-327.
[120]Coilins PG, Avouris P., 2000, “Nanotubes of electronics”, Scientific American, pp.38-45.
[121]Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, et al., 1996, “Crystalline ropes of metallic carbon nanotubes”, Science, vol. 273, pp. 483–487.
[122]Saito Y, Nishikubo K, Kawabata K, Matsumoto T., 1996, “Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge”, Journal of Applied Physics, vol. 80, pp. 3062–3067.
[123]J. G. Wen, Z. P. Huang, D. Z. Wang, J. H. Chen, S. X. Yang, Z. F. Ren, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, M. A. Reed, 2001, “Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films”, J. Mater. Res., vol. 16, pp. 3246-3253.
[124]C. Bower, W. Zhu, S. H. Jin, O. Zhou, 2000, “Plasma-Induced Conformal Alignment of Carbon Nanotubes on Curvatured Surfaces”, Appl. Phys. Lett., vol. 77, pp. 830-832.
[125]http://www.mines.u-nancy.fr/wwwlsgs/diamant/reactor_principle_2.jpg

[126]Chris Hodson, 2004, “Low Temperature Deposition by ICP”, Oxford Instruments Plasma Technology, pp. 1-3.
[127]C. Park, P. E. Anderson, A. Chambers, C. D. Tan, R. Hidalgo, N. M. Rodriguez, 1999, “Further Studies on the Interaction of Graphite Nanofibers with Hydrogen”, J. Phys. Chem. B, vol. 103, pp. 10572-10581.
[128]L. Delzeit, I. McAninch, B. A. Cruden, D. Hash, B. Chen, J. Han, M. Meyyappan, 2002, “Growth of Multiwall Carbon Nanotubes in an Inductively Coupled Plasma Reactor”, J. Appl. Phys., vol. 91, pp. 6027-6033.
[129]B. O. Boskovic, V. Stolojan, R. U. A. Khan, S. Haq, S. R. P. Silva, 2002, “Large-area synthesis of carbon nanofibres at room temperature”, Nature Mater., vol. 27.
[130]K.-Y. Lee, K. Fujimoto, S. Ohkura, S. Honda, M. Katayama, T. Hirao, K. Oura, 2001, “Synthesis of Vertically Aligned Carbon Nanofiber Films by RF Magnetron Sputtering”, Mater. Res. Soc. Symp. Proc., Vol. 675, pp. W3.1.
[131]Y. Chen, S. Patel, Y. G. Ye, S. T. Shaw, L. P. Luo, 1998, “TE Field emission from aligned high-density graphitic nanofibers”, Appl. Phys. Lett., vol. 73, pp. 2119-2121.
[132]http://tflab.skku.ac.kr/PECVD.html
[133]Z. P. Huang, D. Z. Wang, J. G. Wen, M. Sennett, H. Gibson, Z. F. Ren, 2002, “Effect of nickel, iron, and cobalt on growth of aligned carbon nanotubes”, Appl. Phys. A, vol. 74, pp. 387-391.
[134]Y. Chen, D. T. Shaw, L. P. Guo, 2000, “TE Field emission of different oriented carbon nanotubes”, Appl. Phys. Lett., vol. 76, pp. 2469-2471.
[135]D. C. Li, L. M. Dai, S. M. Huang, A. W. H. Mau, Z. L. Wang, 2000, “Structure and growth of aligned carbon nanotube films by pyrolysis”, Chem. Phys. Lett., vol. 316, pp. 349.
[136]K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, J. Olivier, D. Pribat, 2002, “Characterisation of plasma enhanced chemical vapour deposition carbon nanotubes by Auger electron spectroscopy”, J. Vac. Sci. Technol. B, vol. 20, pp. 116.
[137]A. G. Mamalis, L. O. G. Vogtländer, A Markopoulos, 2004, “Nanotechnology and nanostructured materials: trends in carbon nanotubes”, Precision Engineering, vol. 28, pp. 16-30.
[138]Ebbesen TW, Ajayan PM., 1993, “Large scale synthesis of carbon nanotubes”, Nature, vol. 358 pp. 220–222.
[139]Hua Gao, 2002, “Purification and Protein Immobilisation of Carbon Nanotubes”, Department of Chemical Engineering, University of Cambridge, New Museums Site.
[140]Collins PG, Avouris P., 2000, “Nanotubes for electronics”, Scientific American, pp. 38–45.
[141]Anyuan Cao, P. M. Ajayan, G. Ramanath, R. Baskaran, K. Turner, 2004, “Silicon oxide thickness-dependent growth of carbon nanotubes”, APPLIED PHYSICS LETTERS, vol. 84, pp. 109-111.
[142]Yoon-Taek Jang, Jin-Ho Ahn, Yun-Hi Lee, Byeong-Kwon Ju, 2003, “Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition”, Chemical Physics Letters, vol. 372, pp. 745-749.
[143]S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, 2004, “Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition”, APPLIED PHYSICS LETTERS, vol. 83, pp. 135-137.
[144]Adrian Bachtold, Peter Hadley, Takeshi Nakanishi, Cees Dekker, 2001, “Logic Circuits with Carbon Nanotube Transistors”, SCIENCE, vol. 294, pp. 1317-1320.
[145]Yu Huang, Xiangfeng Duan, Yi Cui, Lincoln J. Lauhon, Kyoung-Ha Kim, Charles M. Lieber, 2001 “Logic Gates and Computation from Assembled Nanowire Building B”, SCIENCE, vol. 294, pp. 1313.
[146]Jae Won Jang, Cheol Eui Lee, Seung Chul Lyu, Tae Jae Lee, Cheol Jin Lee, 2004,“Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes”, APPLIED PHYSICS LETTERS, vol. 84, pp. 2877-2879.
[147]Ke Yua, Ziqiang Zhua, Yongsheng Zhanga, Qiong Li, Weiming Wang, Laiqiang Luo, Xianwen Yub, Honglei Mac, Zhenwen Lid, Tao Feng, 2004, “Change of surface morphology and field emission property of carbon nanotube films treated using a hydrogen plasma”, Applied Surface Science, vol. 225, pp. 380-388.
[148]牟中原,2004,“奈米科技的展望”,科學發展月刊,373期,1月。
[149]http://doit.moea.gov.tw/news/newscontent.asp
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top