跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉適意
研究生(外文):Shih-i Liu
論文名稱:釕濺鍍於生醫感測器之備製,量測及讀出電路之探討
論文名稱(外文):Study on the Preparation, Measurement and Readout Circuit of the Bio-medicine Sensor by the Spttering of Ruthenium
指導教授:周榮泉周榮泉引用關係
指導教授(外文):Jung Chuan Chou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:226
中文關鍵詞:射頻濺鍍法感測電極循環伏安法延伸式閘極場效電晶體酸鹼值
外文關鍵詞:EGFETpH valueRutheniumSensing electrodeR.F. sputtering. Cyclic voltammetry
相關次數:
  • 被引用被引用:7
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
釕(ruthenium)金屬為一種貴金屬,其氧化物具有超高容量之儲電效果,其意義有二:第一種效果係以電雙層(Double Layer)機制儲存靜電能;第二種效果為除電雙層外,尚牽涉氧化還原機制以儲存電能,此又稱為擬電容(Pseudo-capacitance),其能量密度為電雙層機制之5至10倍。二氧化釕因具有如金屬般之低電阻係數(小於10-4 ohm-cm)以及高表面積(約800-1000 m2/g(水合物))。選擇以二氧化釕做為感測膜之主要原因有:1.高導電度,2.高表面積, 3.[Ru(II)-Ru(III)-Ru(IV)-Ru(V)-Ru(VI)-Ru(VII)]多組之氧化還原對特性,4.應用於酵素、化合物等之附著效果佳,5.擁有甚佳之電化學可逆性,6.於酸性水溶液中具非常安定等特性,7.具有極佳酸鹼感測特性。
本論文係揭示一種射頻濺鍍法(R.F.)備製氧化釕(Ruthenium Oxide, RuOX)、氮化釕(Ruthenium Nitride)感測膜,應用於離子感測電極上,以模擬微機電系統半導體製程中之感測電極結構,此種模擬ISFET (Ion Sensitive Field Effect Transistor)電性以形成延伸式場效電晶體(Extended Gate Field Effect Transistor, EGFET)之方法,取代傳統之閘極離子感測場電晶體(ISFET),可降低備製及量測所耗費之成本。
本論文主軸係以釕為標的,進行通氧及通氮之射頻濺鍍法,於濺鍍過程中求其室温(25℃)下最佳化製程條件時,氧化釕薄膜可達平均56.52 mV/pH之線性感測度,感測範圍為pH 1-pH 12,而通氮所形成之氮化釕薄膜,於室温(25℃)下最佳化製程條件時,可達平均58.52 mV/pH之線性感測度,感測範圍為pH 1-pH 13。本論文予以製程參數最佳化,再以掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM),原子力顯微鏡(Atomic Force Microscope, AFM),化學分析電子儀(Electron Spectroscope for Chemical Analysis, ESCA),能量散佈光譜儀(Energy Dispersive Spectrometer, EDS),X光薄膜繞射分析(X-Ray Diffraction, XRD)等進行薄膜結構之分析,以Keithley 236電錶進行電流-電壓量測(I-V),驗証可於酸鹼值感測上進行電壓式量測,再以循環伏安法驗証可於酸鹼值感測上進行電流式量測。連接LT1167儀表放大器或MOS之量測應用,可進行温度效應、酵素特性、響應時間、時漂效應、遲滯效應等量測,歸納感測薄膜之特性,可供未來進行製程之研發與IC製程相結合,未來更可結合微機電系統(Micro-Electro-Mechanical Systems, MEMS),於生化量測上之應用。
In this paper, Ruthenium is one kind of noble metals, of which oxide has the characteristics of super-high capacity for storage charge. One of the reasons is double layer mechanism and another is pseudo-capacitance due to redox action on the surface of ruthenium oxide with the solution. The latter is ten times to the former in storing charge. Ruthenium dioxide is as metal because of low resistivity (less to 10-4 ohm•cm) and high surface area (about 800-1000 m2/g). The reasons why are studied for this paper are 1.high conductance, 2. high surface area, 3. multi-redox-active pairs [Ru(II)-Ru(III)-Ru(IV)-Ru(V)-Ru(VI)-Ru(VII)], 4.excellent adhesion of the enzymes and compounds, 5. excellent reversibility in electrochemistry, 6. very stable in the acid solution, 7.good pH sensing membrane.
In this paper, R.F. sputtering technology is presented in fabricating thin film of ruthenium oxide and ruthenium nitride for the sensing electrode in pH Values. This film structure can be simulated as sensing electrode of semiconductor process. ISFET ( Ion Sensitive Field Effect Transistor) can be replaced with the EGFET (Extended Gate Field Effect Transistor), which can be saved for the cost in fabrication and measurement of the devices.
In this paper, the ruthenium is studied in pH-ion measuring application of the sensing film by the R.F. sputtering with oxygen and nitrogen. In sputtering process, the preparation of ruthenium oxide film is the main work for the optimums, which is deposited by R.F. sputtering in the low pressure. The sensing membrane of ruthenium oxide presents a linear response from pH 1 to pH 12 of standard pH solutions with 56.52 mV/pH at the room temperature. If using nitrogen instead of oxygen, the sensing membrane of ruthenium nitride presents a linear response from pH 1 to pH 13 of standard pH solutions with 58.52 mV/pH at the room temperature. There exist superior mechanical and chemical characteristics in two kinds of sensing membranes of ruthenium, therefore they can be the good material in detecting the pH values and application of wide sensing, rapid response time, selection and so on. By a series of Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), Electron Spectroscope for Chemical Analysis (ESCA), Energy Dispersive Spectrometer (EDS), and X-Ray Diffraction (XRD) measurements, the compositions and structures of thin films can be obtained. The I-V (Current Voltage) measurement can be used by Keithley 236 with CD4007, and C-V (cyclic voltammetry) can be proven that the circuit structure of current measurement can be applied for detesting H+ ion in the sensing film of ruthenium composition. By the temperature effect, enzyme, response time, hystersis and so on, the characteristics of both films can be obtained for the development of semiconductor process, can be connected with MEMS (Micro-Electro-Mechanical Systems) in the application of biosensor measurement.
中文摘要------------------------------------------------------------------I
英文摘要 -----------------------------------------------------------------III
誌謝 -----------------------------------------------------------------V
目錄 -----------------------------------------------------------------VI
表目錄 -----------------------------------------------------------------VIII
圖目錄 -----------------------------------------------------------------IX


第一章 緒論----------------------------------------------------1
1.1 研究動機與目的------------------------------------------1
1.2 歷史回顧與進展------------------------------------------2
1.3 論文架構------------------------------------------------6
第二章 理論分析與探討------------------------------------------8
2.1 pH-ISFET工作原理----------------------------------------8
2.2 吸附鍵結模型(Site-binding model)------------------------11
2.3 延伸式閘極離子感測埸效電晶體之原理----------------------14
2.4 電極-電解質電雙層結構理論-------------------------------17
2.5 貴重金屬釕之理論特性------------------------------------21
2.6 酵素之作用機制------------------------------------------23
2.7 讀出電路------------------------------------------------29
第三章 釕感測膜之備製及量測------------------------------------31
3.1 濺鍍原理------------------------------------------------31
3.2 釕感測膜之備製------------------------------------------36
3.3 感測薄膜之電性量測--------------------------------------39
3.4 感測薄膜之材料量測--------------------------------------41
3.5 結果與討論----------------------------------------------44
第四章 釕感測膜之元件特性量測----------------------------------48
4.1 温度效應之研究------------------------------------------48
4.2 時漂效應之研究------------------------------------------53
4.3 遲滯效應之研究------------------------------------------58
4.4 元件壽命之探討------------------------------------------61
第五章 酵素量測及循環伏安法------------------------------------62
5.1 盤尼西林感測器之備製------------------------------------62
5.2 維生素C感測器之備製-------------------------------------65
5.3 循環伏安法之初步分析------------------------------------68
第六章 讀出電路之探討------------------------------------------72
6.1 儀表放大器之探討----------------------------------------72
6.2 讀出電路之探討------------------------------------------73
第七章    結果與討論----------------------------------------------76
第八章    結論與展望----------------------------------------------81
8.1 結論----------------------------------------------------81
8.2    未來展望------------------------------------------------83
參考文獻    --------------------------------------------------------84
口試委員問題之回答 --------------------------------------------------------217
簡歷表    --------------------------------------------------------221
[1] Lucilene Dornelles Mello, Lauro Tatsuo Kubota, 2002,Analytical, Nutritional and Clinical Methods Review of the Use of Biosensors as Analytical Tools in the Food and Drink Industries”, Food Chemistry Vol. 77, PP.237-256.
[2] P. Bergveld, 1970, “Development of an Ion Sensitive Solid-State Device for Neurophysiological Measurement”, IEEE Trans. on Biomedical Engineering BME-17, PP.70-71.
[3]武世香,虞惇,王貴華,1990,“化學量傳感器”,傳感器技術,第1期,PP. 57~62。
[4]C. Diekmann, C. Dumschat, K. Cammann, M. Knoll, 1995, “Disposable Reference Electrode”, Sensors and Actuators B, Vol.24-25, PP.276-278.
[5]武世香,虞惇,王貴華,1991,“化學量傳感器”,傳感器技術,第3期,PP. 53~57。
[6]武世香,虞惇,王貴華,1991,“化學量傳感器”,傳感器技術,第2期,PP. 53~58。
[7]C. Cane, A. Gotz, A. Merlos, I. Gracia, A. Errachid, P. Losantos, and E. Lora-Tamayo, 1996, “Multilayer ISFET Membranes for Microsystems Applications”, Sensors and Actuators B, Vol. 35-36, PP.136-140.
[8]Pavel neuzil, 1995, “ISFET Integrated Sensor Technology”, Sensors and Actuators B, Vol. 24-25, PP.232-235.
[9]武世香,虞惇,王貴華,1990,“化學量傳感器”,傳感器技術,第2期,PP.58-62.
[10]Manuela Adami, Dario Alliata, Corrado Del Carlo, Mauro Martini, Luciana Piras, Marco Sartore, and Claudio Nicolini, 1995, “Characterization of Silicon Transducers with Si3N4 Sensing Surfaces by and AFM and a PAB System”, Sensors and Actuators B, Vol. 24-25, PP.889-893.
[11]Akio Oki, Madoka Takai, Hiroki Ogawa, Yuzuru Takamura, Takayuki Fukasawa, Jun Kikuchi, Yoshitaka Ito, Takanori Ichiki and Yasuhiro Horiike, 2003, “Healthcare Chip for Checking Health Condition from Analysis of Trace Blood Collected by Painless Needle”, Jpn. J. Appl. Phys., Vol. 42, PP. 3722–3727.
[12]L. Campanella, C. Colapicchioni, M. Tomassetti, A. Bianco, S. Dezzi, 1995, “A New ISFET Device for Cocaine Analysis”, Sensors and Actuators B, Vol. 24-25, PP.188-193.
[13]B. D. Liu, Y. K. Su and S. C. Chen, 1989, “Ion-Sensitive Field-Effect Transistor with Silicon Nitride Gate for pH Sensing”, INT. J. Electronics, Vol. 67, No.1, PP. 59~63.
[14]Viatcheslav Volotovsky, Namsoo Kim, 1998, “Determination of Glucose, Ascorbic and Citric Acid by Two-ISFET Multienzyme Sensor”, Sensors and Actuators B, Vol.49, PP.253-257.
[15]Soichi Yabuki, Fumio Mizutani, 1995, “Modifications to a Carbon Paste Glucose-Sensing Enzyme Electrode and a Reduction in the Electrode and a Reduction in the Electrochemical Interference from L-Ascorbate”, Biosensors and Bioelectronics, Vol. 10, PP.353-358.
[16]Wei Chun Chen, Chi Chang Hu, Chen Ching Wang, Chun Kuo Min, 2004, “Electrochemical Characterization of Activated Carbon-Ruthenium Oxide Nanoparticles Composites for Supercapacitors”, Journal of Power Sources, Vol. 125, PP.292-298.
[17]Tongchang Liu, W. G. Pell, and B. E. Conway, 1997, “Self-Discharge and Potential Recovery Phenomena at Thermally and Electrochemically Prepared RuO2 Supercapacitor Electrodes”, Electrochimica Acta, Vol. 42, Nos 23-24, PP.3541-3522.
[18]Kang-Myung Yi, Ki-Woong Lee, Kyung-Won Chung, 1997, “Conductive Powder Preparation and Electrical Properties of RuO2 Thick Film Resistors”, Journal of Materials Science: Materials in Electronics Vol. 8, PP.247-251.
[19]Y. S. Yoon, J. H. Kim, A. M. Schimidt, D. L. Polla, Q. Wang, W. L. Gladfelter, Y. H. Shin, 1998, “RuO2/Ru Electrode on Si3N4/Si Substrate for Microelectronmechanical Systems Devices Based on Pb(Zr1-xTix)O3 Film and Surface Micromachining”, Journal of Materials Science: Materials in Electronics, Vol. 9, PP.465-471.



[20]Shintaro Yamamichi, Pierre Yves Lesaicherre, Hiromu Yamaguchi, Koichi Takemura, Shuji Sone, Hisato Yabuta, Kiyoyuki Sato, Takao Tamura, Ken Nakajima, Sadayuki Ohnishi, Ken Tokashiki, Yukihiro Hayashi, Yoshitake Kato, Yoichi Miyasaka, Masaji Yoshida and Haruhiko Ono, 1997, “A Stacked Capacitor Technology with ECR Plasma MOCVD (Ba,Sr)TiO3 and RuO2/Ru/TiN/TiSiX Storage Nodes for Gb-Scale DRAM’s”, IEEE Transactions on Electron Devices, Vol. 44, NO. 7, PP.1076-1083.
[21]Jung Chuan Chou, Ching Nan Hsiao, 2000, “Comparison of the pH Sensitive of Different Surfaces on Tantalum Pentoxide”, Sensors and Actuators B, Vol. 65, PP.237-238.
[22]Jung Chuan Chou, Hsjian Ming Tasi, Ching Nan Hsiao, Jin Sung Lin, 2000, “Study and Simulation of the Drift Behaviour of Hydrogenated Amorphous Silicon Gate pH-ISFET”, Sensors and Actuators B, Vol. 62, PP.97-101.
[23]Jung Chuan Chou, Yii Fang Wang, Jin Sung Lin, 2000, “Temperature Effect of A-Si:H pH-ISFET”, Sensors and Actuators B, Vol. 62, PP.92-96.
[24]Jung Chuan Chou, Chen Yu Weng, 2001, “Sensitivity and Hysteresis Effect in Al2O3 Gate pH-ISFET, Materials Chemistry and Physics”, Vol. 71, PP.120-124.
[25]Jung Lung Chiang, Jung Chuan Chou, Ying Chung Chen, 2002, “Sensitivity and Hysteresis Properties of A-WO3, A-Ta2O5 and A-Si:H Gate ISFETs”, Optical Engineering, Vol. 41(8), PP.2032-2038.
[26]黃孟娟、張榮錡,“釕氧化物超高電容材料特性簡介”,工業材料 182期,91年2月,PP.120-129。
[27]Masahiko Hiratani, Yuichi Matsui, Kazushige Imagawa and Shinichiro Kimura, 1999, “Hydrogen Reduction Properties of RuO2 Electrodes”, Japan Journal of Application Physics, Vol. 38, PP.L 1275-L1277.
[28]R. E. G. Van Hall, J. C.T. Eijkel, P. Bergveld, 1995, “A Novel Description of ISFET Sensitivity with the Buffer Capacity and Double-Layer Capacitance as Key Parameters”, Sensors and Actuators B, Vol. 24-25, PP.201-205.
[29]P. Woias, L. Meixner, D. Amandi, M. Schonberger, 1995, “Modelling the Short-Time Response of ISFET Sensors”, Sensors and Actuators B, Vol. 24-25, PP.211-217.
[30]王乙方,2001,“以電漿輔助化學氣相沉積法備製非晶形矽氫與溶膠凝膠法備製二氧化錫閘極酸檢離子感測場效電晶體之研究”,國立雲林科技大學,電子與資訊工程所碩士論文。
[31]蔡軒名,2001,“以非晶形碳氫與非晶形矽氫當作氫離子感測場電晶體閘極材料及其讀出電路之研究”,國立雲林科技大學,電子與資訊工程所碩士論文。
[32]江榮隆,1997,“非晶形三氧化鎢場效型離子感測元件之研究”,國立雲林技術學院,電子與資訊工程所碩士論文。
[33]C. E. Mortimer, 吳惠平譯,“大學化學,上冊”,科技圖書股份有限公司,PP.247-258, 213-232, 473-506。
[34]J. Van Der Spiegel, I. Lauks, P. Chan and D. Babic, 1983, “The Extended Gate Chemical Sensitive Field Effect Transistor as Multi-Species Microprobe”, Sensors and Actuators B, Vol. 4, PP.291-298.
[35]T. Katsube, T. Araki, M. Hara, T. Yaji, S. Kobayashi and K. Suzuki, 1983, “A Multi-Species Biosensor with Extended Gate Field Effect Transistor” Proceedings of 6th Sensor Symposium, Tsukuba, Japan, PP.211-214.
[36]Jung Chuan Chou, Pik Kwan Kwan, Zhi Jie Chen, 2003, “SnO2 Separative Structure Extended Gate H+-Ion Sensitive Field Effect Transistor by the Sol-gel Technology and the Readout Circuit Developed by Source Follower”, Japanese Journal of Applied Physics, Part 1, Vol. 42, No. 11, PP.6790-6794.
[37]Yuan Lung Chin, Jung Chuan Chou, Zhen Ce Lei, Tai Ping Sun, Wen Yaw Chung and Shen Kan Hsiung, 2001, “Titanium Nitride Membrane Application to the Extended Gate Field Effect Transistor pH Sensor Using VLSI Technology”, Japanese Journal of Applied Physics, Vol. 40(11), Part 1, PP.6411-6415.
[38]Li Lun Chi, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun and Shen Kan Hsiung, 2000, “Study on Extended Gate Field Effect Transistor with Tin Oxide Sensing Membrane”, Materials Chemistry and Physics, Vol. 63(1), PP.19-23.
[39]Li Lun Chi, Li Te Yin, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun and Shen Kan Hsiung, 2000, “Study on Separate Structure of EnFET to Detect Acetylcholine”, Sensors and Actuators B, Vol. 71, PP.68-72.
[40]I. Lauks, J. Van Der Spiegel, W. Sansen and M. Steyaert, 1985, “Multispecies Integrated Electrochemical Sensor with on-Chip CMOS Circuitry”, Proceedings of International Conference on Solid State Sensors and Actuators Transducers, PP.122-124.
[41]Jiri Janata, 1983, “Electrochemistry of Chemically Sensitive Field Effect Transistors”, Sensors and Actuators B, Vol. 4, PP.255~265.
[42]田福助,吳溪煌,1990,“電化學-理論與應用”,新科技書局,PP.167-198。
[43]熊楚強,王月,1997, “電化學”,文京圖書有限公司,PP.133-172。
[44]吳浩青,李永舫,1995, “電化學動力學”,科技圖書公司,PP.2-143。
[45]賴耿陽,1990, “貴金屬元素化與應用”,復漢出版社,PP.1-168。
[46]邱碧秀,1997,“電子陶瓷材料”,國立編譯館,徐氏基金會出版,PP.11-13。
[47]Rodney Boyer著,李元鳯,林玉蕙,廖辰中,許志行,許承先譯,1999,“生物化學”,學富文化事業有限公司,初版,PP.190-260。
[48]歐靜枝,1997,“酵素”,復漢出版社,二版,PP.5-75。
[49]李秀文,2001,“新型膽固醇生醫感測器之研究”,中原大學,碩士論文。
[50]蘇建雄,2000,“細胞及酵素固定技術”,生物技術的發展與應用,三版,PP.121-133。
[51]黃磁婷,2002,“以離子感測場效電晶體應用於新型乳酸生醫感測之研究”,國立雲林科技大學,電子與資訊工程所碩士論文。
[52]呂鋒洲,林仁混,1991,“基礎酵素學”,經聯出版社,初版,PP.1-17。
[53]陳國誠,1986,“微生物酵素工程學”,藝軒圖書出版社,初版,第六章。
[54]麥松梅,1986,“數位系統設計”,曉園出版社,PP.1-120。
[55]白中和,1999,“測試用類比電路設計實務”,建興書局,PP.2-3。
[56]武世香,虞惇,王貴華,1991,“化學量傳感器”,傳感器技術,第4期,PP. 51~56。
[57]Hong Xiao著,羅正它、張鼎張譯,2001,“半導體製程技術導論”,台灣培生教育出版有限公司,PP. 463。
[58]Kenneth G. Kreider , Michael J. Tarlov, James P. Cline, 1995, “Sputtered Thin-Film pH Electrodes of Platinum, Palladium, Ruthenium, and Iridium Oxides”, Sensors and Actuators B, Vol. 28, PP.167-172.
[59]A. Fog and R. P Buck, 1984, “Electronic Semiconducting Oxides as pH Sensors”, Sensors and Actuators, Vol. 5, PP.137-146.
[60]Stephen A. Campbell, 2001, “The Science and Engineering of Microelectronic Fabrication”, Oxford University press, 2nd Edition, PP.306-321.
[61]吳仁彰,戴惠美,2002,“酸鹼度電極之製作研究”,第八屆化學感測科技研討會論文集,雲林科技大學,PP.125-127。
[62]Robert Koncki, Macro Mascini, 1997, “Screen-print Ruthenium Dioxide Electrodes for pH Measurements”, Analytica Chimica, Vol. 351, PP.143 -149.
[63]汪建民主編,1998,“材料分析”,中國材料科學學會,初版,PP.121-147, PP.267-274, PP.152-173。
[64]廖嵐彬,2003,“二氧化鈦酸鹼離子感測場效電晶體元件與積體化讀出電路之研究”,國立雲林科技大學,電子與資訊工程所碩士論文。
[65]Julian W. Gardner, 1996, “Microsensors: Principles and Applications”, John Wiley & Sons Ltd, PP.190-192 and 256-260.
[66]Yibin Zhang, Long Huang, Tiruchirapalli Arunagiri, Raymond Chyan, 2003, “Investigation of Oxide Growth on Ruthenium and its Interactions with Copper”, 2003 The Electrochemical Society Interface, 204th Meeting,
Orlando, Florida, One Page.

[67]Jeong Gun Lee, Suk Ki Min and Sung Ho Choh, 1994, “Deposition and Properties of Reactively Sputtered Ruthenium Dioxide”, Jpn. J. Appl. Phys., Vol. 33, PP.7080-7085.
[68]Lidia Armelao, Davide Barreca, Bogdan Moraru, 2003, “A Molecular Approach to RuO2-Based Thin Films: Sol-gel Synthesis and Characterisation”, Journal of Non-Crystalline Solids, Vol. 316, PP.364-371.
[69]H. Thara, N. Terada, K. Senzaki, M. Hirabayashi, Y. Kimura, R. Uzuka, F. Kawashima and M. Akimoto, 1987, “Synthesis of MoN and RuN by Active Nitrogen Sputtering”, IEEE Transactions on Magnetics, Vol. Mag-23, No. 2, March, PP.1011-1013.

[70]P. Gopal Ganesan, M. Eizenberg, 2003, “Chemical Vapor Deposited RuOX Films: Interfacial Adhesion Study”, Materials Science and Engineering, B103, PP.213-218.
[71]Wataru Sugimoto, Takeo Kizaki, Katsunori Yokoshima, Yasushi Murakami, Yoshio Takasu, 2004, “Evaluation of the Pseudocapacitance in RuO2 with a RuO2/GC Thin Film Electrode”, Electrochimica Acta, Vol.49, PP.313-320.
[72]陳元杰,廖秋峰,2001,“電雙層電容器簡介”,工業材料雜誌,Vol.176, PP.160-165。
[73]Jung Lung Chiang, Jung Chuan Chou and Ying Chung Chen, 2001, “Study on the Temperature Effect, Hysteresis and Drift of pH-ISFET Devices Based on Amorphous Tungsten Oxide”, Sensors and Actuators B, Vol. 76, PP.624-628.
[74]J. A. Mihell, J. K. Atkinson, 1998, “Planar Thick-Film pH Electrodes Based on Ruthenium Dioxide Hydrate”, Sensors and Actuators B, Vol.48, PP.505-511.
[75]Jung Chuan Chou, Ying Shin Li, Jung Lung Chiang, 2000, “Simulation of Ta2O5 Gate ISFET Temperature Characteristics”, Sensors and Actuators B, Vol. 71, PP.73-76.
[76]Jung Chuan Chou, Yii Fang Wang, Jin Sung Lin, 2000, “Temperature Effect of A-Si:H pH-ISFET”, Sensors and Actuators B, Vol. 62, P.92-P.96.
[77]A. K. Chu, H. C. Lin, and W. H. Cheng, 1997, “Temperature Dependence of Refractive Index of Ta2O5 Dielectric Films”, Journal of Electronic Materials, Vol. 26, No.8, PP.889-892.
[78]Stephen Cheng and Pete Manos, 1989, “Effects of Operating Temperature on Electrical Parameters in an Analog Process”, IEEE Circuits and Devices Magazine, PP.31-38.
[79]Jung Lung Chiang, Shiun Sheng Jan, Ying Chung Chen, and Jung Chuan Chou, 2000, “Sensing Characteristics of ISFET Based on AlN Thin Film”, Proceedings of SPIE-The International Symposium on Optoelectronic Materials and Devices II, Vol. 4078, Taipei, Taiwan, R.O.C, July 26-28, PP.689-696.
[80]武世香,虞惇,王貴華,1991,“化學量傳感器”,傳感器技術,第5期,PP. 57-62。

[81]S. Swaminathan, S.M. Krishnan, Lim Wee Khiang, Zubir Ahamed and Gilbert Chiang, 2002, “Microsensor Characterization in an Integrated Blood Gas Measurement System”, 2002. APCCAS ''02. 2002 Asia-Pacific Conference on, Circuits and Systems, Oct. 2002, Vol. 1, PP.28-31.
[82]P. R. Barabash, R. S. C. Cobbold, and W. B. Wlodarski, 1987, “Analysis of the Threshold Voltage and Its Temperature Dependence in Electrolyte-Insulator-Semiconductor Field-Effect Transistor (EISFET’s)”, IEEE Transations on Electron Devices, Vol. ED-34, PP.1271-1282.
[83]蕭清南,1998,“非晶形矽氫與氧化坦酸鹼離子感測場效電晶體之温度效應、遲滯和時漂的模擬與研究”,國立雲林技術學院,電子與資訊工程所碩士論文
[84]唐國益,1997,“温度對離子場效電晶體特性變化之研究”,華梵人文科技學院,電子工程所碩士論文。
[85]楊恩旭,1988,二氧化錫薄膜應用於離子感測場效電晶體之研究,中原大學,電子工程所碩士論文。
[86]Jung Chuan Chou, Chen Yu Weng, December 26-27, 1999, “The Temperature Effects of Al2O3 Gate for the Commercial Sentron 1090 pH ISFET”, Proceedings of The 1999 Annual Conference of The Chinese Society for Materials Science, Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C, (4 pages).
[87]Jung Chuan Chou, Yu Neng Tseng, December 26-27, 1999, “The Temperature Effect of Si3N4 Gate for the Commercial Beckman ΦTM110 pH ISFET”, Proceedings of The 1999 Annual Conference of The Chinese Society for Materials Science, Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C, (4 pages).
[88]關碧筠,2001,“以溶膠凝膠法備製二氧化鍚分離式閘極氫離子感測場效晶體之研究及其温度效應之量測”,國立雲林技術大學,電子工程系實務專題報告。
[89]Y. Dun, W. Ya-Dong and W. Gui-Hua, 1991, “Time Dependence Response Characteristics of pH-Sensitive ISFET”, Sensors and Actuators B, Vol. 3, PP.279-285.
[90]Zhong Yule, Zhao Shouan, Lin Tao, 1994, “Drift Characteristics of pH-ISFET Output”, Chinese Journal of Semiconductors, Vol. 12, No. 15, PP.838-843.

[91]Shahriar Jamasb, Scott D. Collins, and Rosemary L. Smith, 1998, “A Physical Model for Threshold Voltage Unstability in Si3N4-Gate H+-Sensitive FET’s (pH ISFET’s)”, IEEE Trans. on Electron Devices, Vol. 45, No. 6, PP.1239-1245.
[92]Shahriar Jamasb, Scott D. Collins, and Rosemary L. Smith, 1998, “A Physical Model for Drift in pH-ISFET”, Sensors and Actuators B, Vol. 49, PP.146-155.
[93]黃凱易,1999,“非晶形五氧化二鉭酸鹼離子感測場效電晶體時漂與遲滯之模擬與研究”,國立雲林科技大學,電子工程系實務專題報告, PP. 46- 77。
[94]Peter Hein and Peter Egger, 1993, “Drift Behavior of ISFETs with Si3N4-SiO2 Gate Insulator”, Sensors and Actuators B, Vol. 13-14, PP.655-656.
[95]陳智桀,2001, “以溶膠凝膠法備製二氧化錫分離式閘極場效電晶體之時漂、遲滯效應與讀出電路之研究” ,國立雲林科技大學,電子工程系實務專題報告。
[96]L. Bousse, and P. Bergveld, 1984, “The Role of Buried OH Sites in the Response Mechanism of Inorganic-Gate pH-Sensitive ISFETs”, Sensors and Actuators, Vol. 6, PP.65-78.
[97]L. Bousse, S. Mostarshed, B. Van Der Schoot and N. F. de Rooij, 1994, “Comparison of the Hysteresis of Ta2O5 and Si3N4 pH-Sensing Insulators”, Sensors and Actuators B, Vol. 17, PP.157-164.
[98]T. Mikolajick, R. Kuhnhold and H. Ryssel, 1997, “The pH-Sensing Properties of Tantalum Pentoxide Films Fabricated by Metal Organic Low Pressure Chemical Vapor Deposition”, Sensors and Actuators B, Vol. 44, PP.262-267.
[99]陳佳琪,2002,“可拋棄式尿素感測器與前置放大器之研究”,中原大學,電子工程所碩士論文。
[100]賴怡楟,2003, “盤尼西林醯基酵素生物感測元件之設計與研究”, 國立雲林科技大學,電子工程系實務專題報告。
[101]Jianguo Liu, Li Liang, Gaoxiang Li, Rushui Han, Keming Chen, 1998, “H+ ISFET–Based Biosensor for Determination of Penicillin G”, Biosensors and Bioelectronics, Vol. 13, PP.1023-1028.
[102]Miroslav Stred Ansky, Andrea Pizzariello, Silvia Stred Anska, Stanislav Miertus, 2000, “Amperometric pH-sensing Biosensors for Urea, Penicillin, and Oxalacetate”, Analytica Chimica Acta, Vol. 415, PP.151 -157.
[103]Robert Koncki, Izabela Walcerz, Ewa Leszyczynska, 1999, “Enzymatically Modified Ion-Selective Electrodes for Flow Injection Analysis”, Journal of Pharmaceutical and Biomedical Analysis, Vol. 19, PP.633-638.
[104]蔡炎熹,2003,“離子感測場效電晶體應用於維生C酵素生物感測元件之備製與研究”,國立雲林科技大學,電子工程系實務專題報告。
[105]Ku Shang Chang, Wen Lin Hsu, Hour Young Chen, Chen Kai Chang, Chien Yuan Chen, 2003, “Determination of Glutamate Pyruvate Transaminase Activity in Clinical Specimens Using a Biosensor Composed of Immobilized L-glutamate Oxidase in a Photo-Crosslinkable Polymer Membrane on a Palladium-Deposited Screen-Printed Carbon Electrode”, Analytica Chimica Acta, Vol. 481, PP.199-208.
[106]呂俐瑩,2003,“以幾丁寡醣修飾平面式葡萄糖生物感測器之研究”,國立雲林科技大學,工業化學與災害防治研究所碩士論文。
[107]翁千晴,周澤川,2002,“釕修飾鎳電極酒精感測之研究”,第八屆化學感測科技研討會,雲林科技大學,PP.132-135。
[108]Wang Yong Gang, Zhang Xiao Gang, 2004, “Preparation and Electrochemical Capacitance of RuO2/TiO2 Nanotubes Composites”, Electrochimica Acta, Vol. 49, PP.1957–1962.
[109]J. P. Popic, M. L. Avramov Ivic, N. B. Vukovic, 1997, “Reduction of Carbon Dioxide on Ruthenium Oxide and Modified Ruthenium Oxide Electrodes in 0.5 M NaHCO3”, Journal of Electroanalytical Chemistry, Vol. 421, PP. 105-110.
[110]江鴻儒,2001,“循環伏安及電鍍法製備釕電極在電化學電容器的應用”,國立中正大學,化學工程系碩士論文。
[111]王勇順,2002,“生物感測器訊號處理之關鍵積體電路方塊設計”,私立中原大學,電子工程所碩士論文。



[112]Wen Yaw Chuna, Mao Hsiang Yen, Jia Chyi Chen, Shen Kan Hsiung, Jung Chuan Chou, Tai-Ping Sun, 2002, “Design of a Low-Voltage Instrumentation Amplifier for Enzyme-Extended-Gate Field Transistor Based Urea Sensor Application”, Proceedings of the First International Workshop on Electronic Design, Test and Application. (4 Pages.)
[113]張欣城,2003,“以延伸式結構之n型非晶形矽氫離子感測元件應用於中藥小檗鹼量測之研究”,國立雲林科技大學,電子與資訊工程所碩士論文。
[114]賴麒文,2003,“C與8051使用Keil C單晶片韌體設計”,文魁資訊公司,PP.15.1-15.88。
[115]Xi-Liang Luo, Jing-Juan Xu, Wei Zhao, Hong-Yuan Chen, 2004, “Ascorbic Acid Sensor Based on Ion-Sensitive Field-Effect Transistor Modified with MnO2 Nanoparticles”, Analytica Chimica Acta, Vol. 512, PP.57-61.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top