跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 06:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方書政
研究生(外文):Shu-Cheng Fang
論文名稱:超薄二氧化鉿高介電閘極與氮化工程之研究
論文名稱(外文):Nitrogen engineering of ultrathin high-k gate dielectric for HfO2 when deposited on si-substrate
指導教授:周學韜
指導教授(外文):Hsueh-Tao Chou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:161
中文關鍵詞:高介電常數氮氧化鉿二氧化鉿等效厚度可靠度
外文關鍵詞:high-k dielectric、hafnium oxynitride (HfOXNY)、
相關次數:
  • 被引用被引用:6
  • 點閱點閱:485
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
目前元件尺寸已經越來越小,導致MOSFET製程已遇到瓶頸,尤其傳統二氧化矽於越薄情況下,所造成之穿隧現象也日益嚴重,因此需要找尋替代二氧化矽之材料,高介電材料因此成為近來研究之方向。尤其二氧化鉿(HfO2)於最近幾年為研究最廣之高介電材料,主要是由於二氧化鉿之介電常數(k∼25)為二氧化矽之四倍,但卻有熱穩定性之問題,因此需要藉由製程來改善薄膜特性。

本研究主要目的在於瞭解二氧化鉿及氮氧化鉿高介電常數材料之間之可靠度問題,當注入電子或電洞後,藉由介電層中載子捕捉與釋放行為,量測電流-電壓及電容-電壓之前後變化,並嘗試建立新的模型與機制。

本論文主要針對二氧化鉿及氮氧化鉿之備製過程,使用鉿(Hf)金屬靶材,利用交流濺鍍設備分別通入Ar+O2及N2+O2氣體於矽基板上分別成長二氧化鉿及氮氧化鉿薄膜,並經由不同退火溫度條件作薄膜熱處理,最後再成長鋁作為上下電極及完成MOS之電容結構,經由電性量測與分析比較不同退火溫度熱處理下之電容品質好壞。

實驗結果發現,二氧化鉿與氮氧化鉿薄膜於450 ℃之退火溫度下之等效電容厚度、介電常數、磁滯電壓及漏電流密度等特性皆較其他溫度佳;而氮氧化鉿由於氮原子之加入,因此於許多電性方面都較二氧化鉿薄膜佳,其熱穩定度也較佳;並於定電流注入條件下,介電層中電荷捕捉模式為電洞之行為,整體而言,二氧化鉿薄膜之特性差於氮氧化鉿薄膜,故可以藉由製程方式改善此高介電薄膜之特性。

未來找到製程最佳化後,將著手備製氮氧化鉿之MOSFET元件,期能瞭解傳導模式與取代傳統二氧化矽。
As complementary metal-oxide-semiconductor (CMOS) device scaling reaches the 0.1 μm era, high k gate dielectrics are attracting interest as replacement for conventional SiO2 gate dielectrics. Among many candidate dielectric material, hafnium oxide (HfO2) has been extensively studied because of its reasonable permittivity (>20). But, the HfO2 is crystallized at 500 ℃annealing. The thermal stability of HfO2 must be improved by using different processing procedure.

The initial goals of the work focus on the reliability of the high-k materials of hafnium oxide (HfO2) and hafnium oxynitride (HfOXNY) as well as the mechanisms of trapping transient effects. The new modeling is attempted and developed to explore the traditional viewpoint based on the measurements of I-V and C-V data.

In this thesis, we will emphasize on the fabrication of HfO2 and HfOXNY films. HfO2 and HfOXNY films were deposited on Si wafer respectively using R.F. sputtering with the Ar+O2 and N2+O2 modulation techniques, and then we use different annealing temperature treatments in furnace. Finally, we deposited Al films as top and bottom electrodes, to get the MOS capacitor structure. The characteristics and qualities of MOS capacitors under different annealing temperature condition were analyzed and compared by using I-V and C-V measurements.

Based on the experimental results, we found that both the HfO2 and HfOXNY capacitors structures on Si wafer at 450 ℃ annealing temperature, the characteristics of equivalent oxide thickness (EOT), dielectric constant, hysteresis and leakage current were better than other annealing temperature’s. Consequently, the electrical properties and thermal stability of HfOXNY capacitor are better than these of HfO2 capacitor. For constant current stress condition, the trapping behavior in the dielectric has been proved to be the hole trapping.
The future work will still make an effort on the optimum conditions of fabrication by analyzing the above mechanisms, then to fabricate the MOSFETs with ultra-thin HfOXNY high-k dielectrics using process of low thermal expense and to demonstrated the different of conduction mechanisms.
中文摘要 I

英文摘要 II

誌謝 IV

目錄 VI

表目錄 IX

圖目錄 X

第一章 緒論 1
1.1 研究背景 1
1.1.1 動態隨機存取記憶體 (DRAM) 1
1.1.2 閘極氧化層厚度 2
1.1.3 新材料選擇之法則 3
1.1.4 高介電係數閘極層材料 4
1.1.5 二氧化鉿(HfO2)特性 5
1.2 研究動機 8
第二章 基本相關介紹 13
2.1 超薄MIS電容器備製技術 13
2.1.1 反應性濺鍍法(Reactive Sputtering) 13
2.1.2 熱處理技術 14
2.1.3 熱蒸鍍技術 14
2.2 氧化層電荷 14
2.2.1 介面陷阱(Interface Trap, Qit, Nit, Dit) 14
2.2.2 固定氧化層電荷(Fixed Oxide Charge, Qf, Nf) 15
2.2.3 移動性離子電荷(Mobile Ion Charge, Qm, Nm) 15
2.2.4 氧化層阻陷電荷(Oxide Trapped Charge, Qot, Not) 15
2.3 微結構分析技術 15
2.3.1 原子力顯微鏡(AFM) 15
2.3.2 歐傑電子顯微鏡(AES) 16
2.3.3 表面化學分析儀(ESCA) 16
2.3.4 掃瞄式電子顯微鏡(SEM) 16
2.3.5 二次離子質譜儀(SIMS) 16
2.3.6 X射線繞射儀(XRD) 17
第三章 理論 21
3-1 MIS電容器 21
3.1.1 理想電容-電壓(C-V)曲線 21
3.2 高介電薄膜電傳導機制分析 23
3.2.1 歐姆電流 (Ohmic Current) 23
3.2.2 穿隧 (Tunneling) 23
3.2.3 場發射 (Thermionic Emission)或蕭特基發射 (Schottky Emission) 23
3.2.4 普爾-夫倫克爾效應 (Poole-Frenkel Effect) 25
3.2.5 空間電荷限制電流 (Space-Charge Limited Current) 26
3.3 量測資料之分析與計算 27
3.3.1 等效厚度(Equivalent Oxide Thickness, EOT)之計算 27
3.3.2 介電常數(k)之計算 27
3.3.3 平坦電壓 (VFB)之計算 28
3.3.4 遲滯(hysteresis)曲線之分析 28
3.3.5 崩潰電場(EBD)與漏電流之計算 28
3.3.6 接面電荷密度(Dit)之計算 29
3.3.7 定電壓注入(Constant Voltage Stress;CVS)法之參數取決 29
3.3.8 定電流注入(Constant Current Stress;CCS)法之參數取決 29
3.8.9 捕捉電荷(trapping charge)之計算 30
3.8.10 捕捉位置(centroid)之計算 30
第四章 實驗步驟與研究方法 36
4.1 薄膜備製實驗步驟 36
4.1.1 矽(Si)基板之準備 36
4.1.2 超薄二氧化鉿(HfO2)與氮氧化鉿(HfOXNY)薄膜備製 37
4.1.3 薄膜熱退火處理(Post-Deposition Anneal, PDA) 38
4.1.4 金屬電極之製作 38
4.1.5 電極之後退火處理(Post-Metal Annealing, PMA) 38
4.2 電性量測 39
4.2.1 I-V量測 39
4.2.2 C-V量測 41
4.2.3 可靠度量測 42
4.3 材料分析 43
4.3.1 原子力顯微鏡(Atomic Force Microscope,AFM) 43
4.3.2 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 43
4.3.3 化學電子分析電子儀(ESCA) 44
4.3.4 n&k 薄膜測厚儀 44
第五章 結果與討論 53
5.1 二氧化鉿(HfO2)薄膜電容 53
5.1.1 不同退火溫度之等效電容厚度(EOT)之探討 53
5.1.2 介電常數(k)之探討 53
5.1.3 I-V曲線漏電流之探討 54
5.1.4 遲滯曲線之探討 54
5.1.5 二氧化鉿之成分與鍵結之探討 55
5.1.6 二氧化鉿XRD之探討 55
5.1.7 二氧化鉿表面粗糙度之探討 56
5.2 氮氧化鉿(HfOXNY)薄膜電容
57
5.2.1 不同退火溫度之等效電容厚度(EOT)之探討 57
5.2.2 介電常數(k)之探討 57
5.2.3 I-V曲線漏電流之探討 57
5.2.4 遲滯曲線之探討 58
5.2.5 氮氧化鉿之成分與鍵結之探討 58
5.2.6 氮氧化鉿XRD之探討 59
5.2.7 氮氧化鉿表面粗糙度之探討 59
5.3 二氧化鉿(HfO2)及氮氧化鉿(HfOXNY)之比較
60
5.3.1 等效電容厚度(EOT)之比較 60
5.3.2 介電常數(k)之比較 60
5.3.3 漏電流與等效電容厚度之比較 60
5.4 二氧化鉿及氮氧化鉿薄膜電容可靠度分析 61
5.4.1 二氧化鉿薄膜電容於+Vg注入(Substrate Injection) 61
5.4.2 二氧化鉿薄膜電容於-Vg注入(Gate Injection) 62
5.4.3 二氧化鉿薄膜電容捕捉位置(Centroid)之探討 62
5.4.4 二氧化鉿薄膜電容定電流注入I-V曲線之探討 64
5.4.5 氮氧化鉿薄膜電容於+Vg注入(Substrate Injection) 65
5.4.6 氮氧化鉿薄膜電容於-Vg注入(Gate Injection) 66
5.4.7 氮氧化鉿薄膜電容捕捉位置(Centroid)之探討 66
5.4.8 氮氧化鉿薄膜電容定電流注入I-V曲線之探討 67
5.5 高介電薄膜傳導機制之探討 69
5.5.1 二氧化鉿薄膜傳導機制之探討 69
5.5.2 氮氧化鉿薄膜傳導機制之探討 70
第六章 結論與未來研究方向
6.1 結論 131
6.2 未來研究方向 133
參考文獻 134
附錄一 口試委員問題之回答 144
參考文獻
[1]http://taiwan.cent.com, 2003, ”英特爾研究以金屬取代矽晶片”, CNET新聞專區, 台北。
[2]http://www.eettaiwan.com, 2003, ”IMEC宣稱氧化鉿閘堆疊研究取得進展”,電子工程專刊, 台北。
[3]來大偉, 2003, ”用高k電介質來替代二氧化矽目前仍有不少困難”,新電子科技雜誌, 台北。
[4]G. D. Wilk, D.A. Muller, “Correlation of annealing effects on local electronic structure and macroscopic electrical properties for HfO2 deposited by atomic layer deposition”, Applied Physics Letters, Vol. 83. pp. 3984, 2003.
[5]Seok-Woo Nam, Jung-Ho Yoo, Hae-Young Kim, Sung-Kwan Kang, and Dae-Hong Ko, “Study of ZrO2 thin films for gate oxide application”, J. Vac. Sci. Technol. A 19. pp. 1720, 2001.
[6]T. S. Lay, Y. Y. Liao, W. D. Liu, Y. H. Lai, W. H. Hung, J. Kwo, M. Hong, J. P. Mannaerts, “Rapid Post-metallization annealing effects on high-k Y2O3/Si capacitor”, Solid-State Electronics, Vol. 47, pp. 1021-1025, 2003.
[7]Asuha Takuya Kobayashi, Osamu Maida, Morio Inoue, and Masao Takashi, “Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si”, Applied Physics Letters, Vol. 81, pp. 3410-3412, 2002.
[8]G. D. Wilk, and R. M. Wallace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on Silicon”, Applied Physics Letters, Vol. 74, pp. 2854-2856, 1999.
[9]林正平, “奈米世代DRAM技術發展趨勢”, 電子與材料雜誌, 第18期, pp. 61-68.
[10]簡昭欣, “新世代邏輯電路電晶體閘極層-高介電薄膜簡介”, 電子與材料雜誌, 第18期, pp. 69-75.
[11]賴明駿, “高介電係數閘極界層技術簡介”, 電子與材料雜誌, 第14期, pp. 131-142.
[12]Pascal Masson, Jean-Luc Autran, and Michel Houssa, “Frequency Characterization and Modeling of Interface Traps in HfSiOxOy/HfO2 Gate Dielectric Stack from a Capacitance Point of View”, Applied Physics Letters, Vol. 81, pp. 3392-3394, 2002.
[13]Rino Choi, Katsunori Onishi, Chang Seok Kang, Hag-Ju Cho, Y. H. Kim, Siddharth Krishnan, Akbar, and Jack C. Lee, “Effects of Deuterium Anneal on MOSFETs With HfO2 Gate Dielectrics”, IEEE, Vol. 24, pp. 144-146.
[14]A. Y. Kang and P. M. Lenahan, “Electron Spin Resonance Observation of Trapped Electron Centers in Atomic-Layer-Deposited Hafnium Oxide on Si”, Applied Physics Letters, Vol. 83, pp. 3407-3409, 2003.
[15]Yi-Sheng Lai, J. S. Chen, “Evolution of Chemical Bonding Configuration in Ultrathin SiOxNy Layers Grown by Low-Temperature Plasma Nitridation”, J. Vac. Sci. Technol. A 21, pp. 772-778, 2003.
[16]A. Del Prado, F. L. Mattinez, I. Martil, and G. Gonzalez-Diaz, “Effect of Substrate Temperature in SiOxNy Films Deposited by Electron Cyclotron Resonance”, J. Vac. Sci. Technol. A 17, pp. 1253-1268, 1999.
[17]T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal Stability of Ultrathin ZrO2 Films Prepared by Chemical Vapor Deposition on Si(100)”, Applied Physics Letters, Vol. 78, pp. 368-370, 2001.
[18]A. Stesmans and V. V. Afanas’ev, “Si Dangling-Bond-Type Defects at The Interface of (100)Si with Ultrathin HfO2”, Applied Physics Letters, Vol. 82, pp. 4074-4076, 2003.
[19]V. V. Afanas’ev, and A. Stesmans, “Hole Trapping in Ultrathin Al2O3 and ZrO2 Insulators on Silicon”, Applied Physics Letters, Vol. 80, pp. 1261-1263, 2002.
[20]Xiongfei Yu, Chunxiang Zhu, Hang Hu, Albert Chin, M. F. Li, Byung Jin Cho, Dim-Lee Kwong, P. D. Foo, and Ming Bin Yu, “A High-Density MIM Capacitor (13fF/μm2) Using ALD HfO2 Dielectric”, IEEE Electron Device Letter, Vol. 24, pp. 63-65, 2003.
[21]Geunhag Bae, Hunjung Lee, Donggeun Jung, Hyeoksu Kang, Yonghan Roh, and Cheol-Woong Yang, “Properties of HfO2/Hf-Silicate/Si Structures with Hf-Silicate Formed by Hf Metal Deposition and Subsequent Reaction”, Jpn. J. Appl. Phys. Vol. 40, pp. L813-L816, 2001.
[22]L. Kim, J. Kim, and D. Jung, Y. Roh, “Controllable Capacitance-Voltage Hysteresis Width in The Aluminum-Cerium-Dioxide-Silicon Metal-Insulator-Semiconductor Structure: Application to Nonvolatile Memory Device without Ferroelectrics”, Applied Physics Letters, Vol. 76, pp. 1881-1883, 2002.
[23]Herbert Schroeder, and Sam Schmitz, “Thickness Dependence of Leakage Currents in High-Permittivity Thin Films”, Applied Physics Letters, Vol. 83, pp. 4381-4383, 2003.
[24]Herbert Schoeder, Sam Schmitz, and Paul Meuffels, “Leakage Currents in High-Permittivity Thin Films”, Applied Physics Letters, Vol. 82, pp. 781-783, 2003.
[25]Sufi Zafar, Byoung H. Lee, and James Stathis, “Evaluation of NBTI in HfO2 Gate-Dielectric Stack With Tungsten Gates”, IEEE Electron Device Letter, Vol. 25, pp. 153-155, 2004.
[26]B. Travel, X. Garros, T. Skotnicki, F. Martin, C. Leroux, D. Bensahel, M. N. Semeria, Y. Morand, J. F. Damlencourt, S. Descombes, F. Leverd, Y. Le-Friec, P. Leduc, M. Rivore, S. Jullian, R. Pantel, “High Performance 40 nm nMOSFETs with HfO2 Gate Dielectric and Polysilcion Damascene Gate”, IEEE IEDM, Vol. 17, pp. 429-432, 2002.
[27]Patrick S. Lysaght, Brendan Foran, Gennadi Bersuker, Peijun J. Chen, Robert W. Murto, and Howard R. Huff, “Physicochemical Properties of HfO2 in Response to Rapid Thermal Anneal”, Applied Physics Letters, Vol. 82, pp. 1266-1268, 2003.
[28]J. F. Conley, Jr. and Y. Ono, R. Solanki, G. Stecker and W. Zhuang, “Electrical Properties of HfO2 Deposited via Atomic Layer Deposition using Hf(NO3)4 and H2O”, Applied Physics Letters, Vol. 82, pp. 3508-3510, 2003.
[29]Hyoungsub Kim, Paul C. Mclntyre, and Krishna C. Saraswat, “Effects of Crystallization on the Electrical Properties of Ultrathin HfO2 Dielectric Grown by Atomic Layer Deposition”, Applied Physics Letters, Vol. 82, pp. 106-108, 2003.
[30]Moonju Cho, Hong Bae Park, Jaehoo Park, Suk Woo Lee, Cheol Seong Hwang, Gi Hoon Jang and Jaehack Jeong, “High-k Properties of Atomic-Layer-Deposited HfO2 Films using a Nitrogen-Containing Hf[N(CH3)2]4 Precursor and H2O Oxidant ”, Applied Physics Letters, Vol. 83, pp. 5503-5505, 2003.
[31]S. J. Lee, C. H. Choi, A. Kamath, R. Clark, and D. L. Kwong, “Characterization and Reliability of Dual High-k Gate Dielectric Stack (Poly-Si-HfO2-SiO2) Prepared by In Situ RTCVD Process for System-on-Chip Applications”, IEEE Electron Device Letter, Vol. 24, pp. 105-107, 2003.
[32]A. Vandooren, A. Barr, L. Mathew, T. R. White, S. Egley, D. Pham, M. Zavala, S. Samavedam, J.Schaeffer, J. Conner, B. –Y. Nguyen, Bruce E. White, Jr., Marius K. Orlowski, and J. Mogab, “Fully-Depleted SOI Devices With TaSiN Gate, HfO2 Gate, Dielectric and Elevated Source/Drain Extensions”, IEEE Electron Device Letter, Vol. 24, pp. 342-344, 2003.
[33]Hyeoksu Kang, Yonghan Roh, Geunhag Bae, Donggeun Jung, and Cheol-Woong Yang, “Characteristics of HfO2/HfSixOy Films as an Alternative Gate Dielectric in Metal-Oxide-Semiconductor Devices”, J. Vac. Sci. Technol. B 20(4), pp.1360-1362, 2002.
[34]Mohammad Shahariar Akbar, S. Gopalan, H. –J. Cho, K. Onishi, R. Choi, R. Nieh, C. S. Kang, Y. H. Kim, J. Han, S. Krishnan, and Jack C. Lee, “High-Performance TaN/HfSiON/Si Metal-Oxide-Semiconductor Structures Prepared by NH3 Post-Deposition Anneal”, Applied Physics Letters, Vol. 82, pp. 1757-1759, 2003.
[35]Sangmoo Chol, Myunggjun Cho, and Hyungsang Hwang, “Improved Metal-Oxide-Nitride-Oxide-Silicon-Type Flash Device with High-k Dielectric for Blocking Layer”, J. Appl. Phys., Vol. 94, No. 8, pp. 5408-5410, 2003.
[36]Noriyuki Miyata, Masakazu Ichikawa, Toshihide Nabatame, Tsuyoshi Horikawa, and Akira Toriumi, “Thermal Stability of a Thin HfO2/Ultrathin SiO2/Si Structure: Interface Si Oxidation and Silicidation”, Jpn. J. Appl. Phys., Vol. 42, pp L138-L140, 2003.
[37]Zhen Xu, Michel Houssa, Richard Carter, Mohamed Naili, Stefan De Gendt, and Marc Heyns, “Constant Voltage Stress Induced Degradation in HfO2/SiO2 Gate Dielectric Stacks”, J. Appl. Phys., Vol. 91, No.12, pp. 10127-10129, 2002.
[38]A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groesenken, H. E. Maes, and U. Schwalke, “Origin of The Threshold Voltage Instability in SiO2/HfO2 Dual Layer Gate Dielectrics”, IEEE Electron Device Letter, Vol. 24, No. 2, pp. 87-89, 2003.
[39]Hang Hu, Chunxiang Zhu, Xiongfei Yu, Albert Chin, M. F. Li, Byung Jin Cho, Dim-Lee Kwong, P. D. Foo, Ming Bin Yu, Xinye Liu, and Jerry Winkler, “MIM Capacitors Using Atomic-Layer-Deposited High-k (HfO2)1-X(Al2O3)X Dielectrics”, IEEE Electron Device Letter, Vol. 24, No. 2, pp. 60-62, 2003.
[40]Hyo Silk Chang, Hyunsang Hwang, Mann-Ho Cho, Jong Won Moon, Seok Joo Doh, Jong Ho Lee, and Nae-In Lee, “Thermal Stability and Decomposition of The HfO2-Al2O3 Laminate System” Applied Physics Letters, Vol. 84, pp. 28-30, 2004.
[41]Y. T. Hou, M. F. Li, H. Y. Yu, and D. –L. Kwong, “Modeling of Tunneling Currents Through HfO2 and (HfO2)X(Al2O3)1-X Gate Stacks”, IEEE Electron Device Letter, Vol. 24, No. 2, pp. 96-98, 2003.
[42]D. Wu, A. –C. Lindgren, S. Persson, G. Sjoblom, M. von Haartman, J. Seger, P. –E. Hellstrom, J. Olsson, H. –O. Blom, S. –L. Zhang, m. Ostling, E. Vainonen-Ahlgren, W. –M. Li, E. Tois, and M. Tumminen, “A Novel Strained Si0.7Ge0.3 Surface-Channel pMOSFET With an ALD TiN/Al2O3/HfAlOx/Al2O3 Gate Stack”, IEEE Electron Device Letter, Vol. 24, No. 3, pp. 171-173, 2003.
[43]M. Houssa, J. L. Autran, V. V. Afanas’ev, A. Stesmans, and M. M. Heyns, “Defect Generation in Ultrathin SiON/ZrO2 Gate Dielectric Stacks”, Journal of The Electrochemical Society, Vol. 149, No. 12, pp. F181-F185, 2002.
[44]Zhen Xu, Ben Kaczer, Robin Degraeve, Stefan De Gendt, Marc Heyns, and Guido Groeseneken, “Electrical properties of Al2O3/ZrO2/Al2O3 gate stack in p-substrate metal oxide semiconductor devices”, Journal of The Electrochemical Society, Vol. 150(5), pp.G307-G310, 2003.
[45]Rino Choi, Katsunori Onishi, Chang Seok Kang, Hag-Ju Cho, Y. H. Kim, Siddharth Krishnan, M. S. Akbar and Jack C. Lee, “Effects of deuterium anneal on MOSFETs with HfO2 gate dielectrics”, IEEE Electron Devices Lett, vol. 24, no. 3, pp. 144-146, 2003
[46]Hyunjun SIM, Hyosik CHANG and Hyunsang HWANG, “Electrical characteristics of ozone-oxidised HfO2 gate dielectrics” J. Appl. Phys., vol 93, no. 42, pp. 1596-1597, 2003
[47]Min Yang, Evgeni P. Gusev, Meikei Ieong, Oleg Gluschenkov, Diane C.Boyd, Kevin K. Chan, “Performance dependence of CMOS on silicon substrate orientation for ultrathin oxynitride and HfO2 gate dielectrics”, IEEE Electron Devices Lett., vol. 24, no. 5, pp. 339-344, 2003.
[48]Hag-Ju Cho, Chang Seok Kang, Katsunori Onishi, Sundar Gopalan, Renee Nieh, Rino Choi, Siddarth Krishnan, and Jack C. Lee, “Structural and electrical properties of HfO2 with top nitrogen incorporated layer”, IEEE Electron Devices Lett., vol. 21, no. 5, pp. 249-251, 2002.
[49]Kouichi Muraoka, “Reaction steps of silicidation in ZrO2/SiO2/Si layered structure”, Appl. Phys. Lett., vol. 80, pp. 4516-4518, 2002.
[50]Der-Chi SHYE, Bi-shiou CHIOU, Chuan-Chou HWANG, Cheng-Chung JAING, Hsien-Wen Hsu, Jyh-Shin CHEN and Huang-Chung CHENG, ”The Effects of Post Excimer Laser Annealing on (Ba,Sr)TiO3 Thin Films at Low Substrate Temperatures”, Jpn. J. Appl. Phys., Vol. 42, pp1680-1685, 2003.
[51]Hag-ju Cho, Sejun Oh, Chang Seok Kang, Cheol Seong Hwang, Byoung Teak Lee,Ki Hoon Lee, Hideki Horii, Sang In Lee, and Moon Yong Lee, ”Improvement of leakage current characteristics of Ba0.5Sr0.5TiO3 films by N2O plasma surface treatment”, Appl. Phys. Lett., Vol. 71, No. 22, 1997.
[52]In Sang JEON, Jaehoo PARK, Dail EOM, Cheol Seong HWANG, Hyeong Joon KIM, Chan Jin PARK, Hoon Young CHO, Jong-Ho LEE, Nae-In LEE and Ho-Kyu KANG, ”Post-Annealing Effects on Fixed Charge and Slow/Fast Interface States of TiN/Al2O3/p-Si Metal-Oxide-Semiconductor Capacitor”, Jpn. J. Appl. Phys., Vol. 42, pp1222-1226, 2003.
[53]Hong Bae Park, Moonju Cho, Jaehoo Park, and Cheol Seong Hwang, ”Effects of plasma nitridation Al2O3 interlayer on thermal stability, fixed charge desity, and interfacial trap states of HfO2 gate dielectric films grown by atomic layer depsoition”, Appl. Phyl. Lett., Vol. 94, No.3, 2003.
[54]M. A. Quevedo-Lopez, M. El-Bouanani, M. J. Kim, B. E. Gnade, and R. M. Wallace, “Effect of N Incorporation on Boron Penetration from p+ Polycrystalline-Si Through HfSixOy Films”, Appl. Phyl. Lett., Vol. 82, No.26, pp. 4669-4671, 2003.
[55]Huiling Shang, Kam-Leung Lee, P. Kozlwski, C. D’Emic, I. Babich, E. Sikorski, Meikei Ieong, H. –S. P. Wong, Kathtyn Guarini, and W. Haensch, “Self-Aligned n-Channel Germanium MOSFETs With a Thin Ge Oxynitride Gate Dielectric and Tungsten Gate”, IEEE Electron Devices Lett., Vol. 25, No. 3, pp. 135-137, 2004.
[56]G. Shang, P. W. Peacock, and J. Roberston, “Stability and Band Offsets of Nitrogenated High-Dielectric-Constant Gate Oxides”, Appl. Phyl. Lett., Vol. 84, No.1, pp. 106-108, 2004.
[57]Sangmoo Choi, Sanghun Jeon, Myungjun Cho, and Hyunang Hwang, “High-k Gate Dielectric Prepared by Low-Temperature Wet Oxidation of Ultrathin Metal Nitride Directly Deposited on Silicon”, Jpn. J. Appl. Phys., Vol. 42, pp L102-L104, 2003.
[58]C. H. Choi, T. S. Jeon, R. Clark, and D. L. Kwong, “Eelctrical Properties and Thermal Stability of CVD HfOxNy Gate Dielectric With Poly-Si Gate Electrode”, IEEE Electron Devices Lett., Vol. 24, No. 4, pp. 215-217, 2003.
[59]M. Lee, Z. –H. Lu, W. –T. Ng, D. Landheer, X. Wu, and S. Moisa, “Interfacial Growth in HfOxNy gate Dielectric Deposited Using [(C2H5)2N]4Hf with O2 and NO”, Appl. Phyl. Lett., Vol. 83, No.13, pp. 2638-2640, 2003.
[60]Chang Seok Kang, H. –J. Cho, K. Onishi, R. Choi, Y. H. Kim, R. Nieh, J. Han, S. krishan, A. Shahriar, and Jack C. Lee, “Nitrogen Concentration Effects and Performance Improvement of MOSFETs Using Thermally Stable HfOxNy Gate Dielectric”, IEEE IEDM, pp. 865-868, 2002.
[61]Chang Seok Kang, Hag-Ju Cho, Rino Choi, Young-Hee Kim, Chang Young Kang, Se Jong Rhee, Changhwan Choi, Mohammad Shahariar Akbar, and Jack C. Lee, “The Electrical and Material Characterization of Hafnium Oxynitride Gate Dielectrics With TaN-Gate Electrode”, IEEE Electron Devices Lett., Vol. 51, No. 2, pp. 220-226, 2004.
[62]羅正忠, 張鼎張編譯, 2002, 半導體製程技術導論, 台灣培生教育出版社, 第二版, pp. 461.
[63]何朝仁, “氮化鋁壓電薄膜製作及特性化”, 工業材料雜誌, 202期, pp. 94-99, 2003.
[64]莊達人,2003, VLSI製造技術, 高立圖書有限公司, 第二版, pp. 201-202.
[65]施敏, 2002, 半導體元件物理與製作技術, 國立交通大學出版社, 第二版, pp. 278-280.
[66]林麗娟, 田大昌, “微結構分析技術之介紹”, 工業材料雜誌, 181期, pp 73-79, 2002.
[67]林麗娟, 田大昌, “場發射是歐傑電子顯微鏡(AES)/微區表面化學電子能譜儀(ESCA)之簡介”, 工業材料雜誌, 201期, pp 81-89, 2002.
[68]何快容, 陳志榮, 黃明清, 周學良, 梁玉麟, “材料分析在積體電路上之應用”, 電子與材料, 第八期, pp. 63-74, .
[69]龔道本, 1996, “MIS電容器的平帶電容的計算”, 半導體光電, 第17卷, 第一期, pp. 32-38.
[70]S. M. SZE, 1985, Physics of Semiconductor Device, Chapter 7, 2nd Edition, Central Book Company, Taipei, Taiwan.
[71]Jinrong Cheng, Zhongyan Meng, “Thickness-Dependent Microstructures and Electrical Properties of PZT Films Derived From Sol-Gel Process”, Thin Solid Films, 385, pp. 5-10, 2001.
[72]X. F. Chen, W. G. Zhu, O. K. Tan, “Microstructure, Dielectric Properties and Hydrogen Gas Sensitivity of Sputtered Amorphous Ba0.67Sr0.33TiO3 Thhin Films”, Mater. Sci. and Eng., B77, pp.177-184, 2000.
[73]J. D. Baniecki, T. Shioga, K. Kurihara, and N. Kamehara, “Investigation of The Importance of Interface and Bulk Limited Transport Mechanisms on The Leakage Current of High Dielectric Constant Thin Film Capacitors”, J. Appl. Phys., Vol 94, No. 10, pp. 6741-6748, 2003.
[74]李家璋, “未摻雜鑽石薄膜的電壓電流特性與電傳導機制分析”, 國立雲林科技大學電子與資訊工程研究所碩士論文, 1999.
[75]張天信, “氧電漿對改善(Ta2O5)0.92-(TiO3)0.08高介電薄膜特性之研究”, 國立雲林科技大學電子與資訊工程研究所碩士論文, 2001.
[76]O. K. Tan, W. Zhu, M. S. Tse, X. Yao, “Hydrogen-Sensitive I-V Characteristics of Metal-Ferroelectric Gas Sensor Device Fabricated by Sol-Gel Technique”, Mater. Sci. and Eng., B58, pp.221-228, 1999.
[77]C. Y. Hu, “The Study of (TiO2)x-(Ta2O5)1-x High Dielectric Thin Films by RF Sputtering”, National Yunlin University of Science and Technology, Master Thesis, 2000.
[78]M. J. Tsai, “The Study of Composite and Multilayered (Ta2O5)-(TiO2) High Dielectric Thin Films”, National Yunlin University of Science and Technology, Master Thesis, 2000.
[79]Donald A. Neamen, “Semiconductor Physics and Devices, Second Edition, Irwin, 1997.
[80]John Campi, Yan Shi, Yanbin Luo, Feng Yan, and Jian H. Zhao, “Study of interface State Density and Effective Oxide Charge in Post-Metallization Annealed SiO2/SiC Structures,” IEEE Trans. on Electron Devices, vol. 46, no. 3, pp. 511-519, 1999.
[81]Roland Sorge, “Non-quasistatic Simultaneous HF/LF-CV Measurements for Rapide Characterization of MOS Structures”, Solid-State Electronics, vol. 42, no. 5, pp. 761-770, 1998.
[82]Zhen Xu, Michel Houssa, Richard Carter, Nohamed Naili, Stefan De Gendt and Marc Heyns, “Constant voltage stress induced degradation in HfO2/SiO2 gate dielectric stacks”, J. Appl. Phys., vol. 91, no. 12, pp. 10127-10129, 2002.
[83]Kow-Ming Chang, Chii-Horng Li, Shih-Wei Wang, Ta-Hsun Yeh, Ji-Yi Yang and Tzyh-Cheang Lee, “The Relaxation phenomena of positive charges in thin gate oxide during Fowler-Nordheim tunneling stress”, IEEE transaction on Electron Devices, vol. 45, no. 8, p. 1684-1689, 1998.
[84]T.P. Chen, Stella Li, S. Fung and K.F. Lo, “Interface trap generation by FN injection under dynamic oxide field stress”, IEEE Transactions on Electron Devices, vol. 45, no. 9, p.1920-1926, 1998.
[85]M. Houssa, J L. Autran, V. V. Afanas’ev, A. Stesmans and M. M. Heyns, “Defect generation in ultrathin SiON/ZrO2 gate dielectric stacks”, J. Elec. Soc., 149(12), F181-F185, 2002.
[86]李雅明, “固態電子學”, 全華科技圖書股份有限公司, 1995.
[87]Kazuhiko Yamamoto, Shigenori Hayashi, Masaaki Niwa, Masayuki Asai, Sadayoshi Horii, and Hironobu Miya, “Impact of Hf Metal Predeposition on the Properties of HfO2 Grown by Physical and Chemical Vapor Deposition”, Jpn. J. Appl. Phys., Vol. 42, pp1835-1839, 2003.
[88]Bing-Yue Tsui, and Hsiu-Wei Chang, “Formation of Interfacial Layer During Reactive Sputtering of hafnium Oxide”, J. Appl. Phys., vol. 93, No. 12, pp. 10119-10124, 2003.
[89]K. Choi, H.Harris, S. Gangopadhyay, and H. Temkin, “Cleaning of Si and Properties of the HfO2-Si Interface”, J. Vac. Sci. Technol. A 21(3), pp. 718-722, 2003.
[90]C. Wiemer, M. Fanciulli, B. Crivelli, G. Pavia, and M. Alessandri, “Evolution of Crystallographic Ordering in Hf1-XAlXOY High-k Dielectric Deposited by Atomic Layer Deposition”, Appl. Phyl. Lett., Vol. 83, No.25, pp. 5271-5273, 2003.
[91]林進澔, 2001, “鑽石薄膜的表面處理對電子親和力特性之影響”, 國立雲林科技大學電子與資訊工程研究所碩士論文。
[92]Seok Woo Nam, Jung Ho Yoo, Hae-Young Kim, Sung Kwan Kang, Dae Hong Ko, Cheol Woong Yang, Hoo Jeong Lee, Mann Ho Cho and Ja Hum Ku, “Study of ZrO2 thin films for gate oxide applications”, J. Vac. Sci. Technol. A 19(4), pp. 1720-1724, 2001.
[93]Bing Yue Tsui and Hsiu Wei Chang, “Formation of interfacial layer during recative sputtering of hafnium oxide”, J. Appl. Phys., vol 93, no. 12, pp. 10119-10124, 2003.
[94]Chang Seok Kang, H -J Cho, K. Onishi, R. Choi, R. Nieh, S. Goplan, S. K. Krishnan, and Jack C. Lee, “Improved Thermal Stability and Device Performance of Ultra-Thin (EOT<10 Å) Gate Dielectric MOSFETs by using Hafnium Oxynitride (HfOxNy)”, IEEE IDEM, pp. 146-147, 2002.
[95]Byoung Hun Lee, Laegu Kang, Wen-Jie Qi, Renee Nieh, Yonhjoo Jeon, Katsunori Onishi, and Jack C. Lee, “Ultrathin Hafnium Oxide with Low Leakage and Excellent Reliability for Alternative Gate Dielectric Application”, IDEM, pp.133-136, 1999.
[96]Chao Chi Hong, Wei Jian Liao and Jenn Gwo Hwu, “Thickness-dependent stress effect in p-type metal-oxide-semiconductor structure investigated by substrate injection current”, Appl. Phys. Lett. Vol. 82, no. 22, pp.3916-3918, 2003.
[97]T. P. Chen, J. Y. Huang, M. S. Tse, S. S. Tan, C. H. Ang, S. Fung, “Influence of Interface Nitrogen on Edge Charge Trapping at the Interface of Gate Oxide/Drain Extension in Metal-Oxide-Semiconductor Transistors”, Appl. Phys. Lett. Vol. 82, no. 18, pp.3113-3115, 2003.
[98]W. J. Zhu, T. P. Ma, S. Zafar and T. Tamagawa, “Charge trapping in ultrathin hafnium oxide”, IEEE Electron Devices Lett, vol. 23 no. 10, pp. 597-599, 2002.
[99]G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and zirconium silicates for advanced gate dielectrics”, J. Appl. Phys., vol 87, no. 1, pp. 484-492, 2000.
[100]Zhen Xu, Ben Kaczer, Robin Degraeve, Stefan De Gendt, Marc Heyns, and Guido Groeseneken, “Electrical Properties of Al2O3/ZrO2/Al2O3 Gate Stake in p-Substrate Metal Oxide Semiconductor Devices”, Journal of The Electrochemical Society, 150 (5), pp. G307-G310, 2003.
[101]Etsumasa Kameda, Toshihiro Matsuda, Yoshiko Emura, and Takashi Ohzone, “Fowler-Nordheim Tunneling in MOS Capacitors with Si-Implanted SiO2”, Solid-State Electronics, Vol. 42, NO. 11, pp. 2015-2111, 1998.
[102]http://www.lasurface.com/, “XPS,AES,UPS and ESCA.”.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top