跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭貴鴻
研究生(外文):Kuei-Hung Cheng
論文名稱:漸進式小波係數編解碼系統設計及其硬體設計與實現
論文名稱(外文):Progressive Wavelet Coefficients Codec System Design and Its Hardware Design and Implementation
指導教授:黃穎聰黃穎聰引用關係
指導教授(外文):Yin-Tsung Hwang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:94
中文關鍵詞:醫學影像視訊編碼零樹編碼形狀適應性壓縮
外文關鍵詞:zero tree coding shape adaptive video coding me
相關次數:
  • 被引用被引用:1
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在論文中我們提出一新穎的形狀適應性零樹編碼技術,並將演算法實現在硬體上,採用形狀適應性編碼技術可以全盤地摒除視訊物件外的編碼進而節省編碼所需資料量,編碼動作上採用由下而上的順序處理,並以寬度優先的搜尋方式(breadth first)。不需和SPIHT演算法一樣,在執行處理前必須進行各像素重要性的事先確認,影像的像素資料中我們僅執行一次重要性的檢測。此系統架構不需使用如SPIHT演算法中用來記錄係數座標所需的龐大列表,可大幅減少硬體實現的記憶體需求,我們所提出的演算法擴展至三維空間的處理,可以支援視訊影像編碼及三維醫學影像壓縮應用。在模擬效果上,當加入形狀適應性的功能,即採用物件方式編碼,PSNR上表現平均可高出SPIHT演算法4dB,若系統不包含形狀適應性的功能時,我們提出的方法依然可高於SPIHT演算法。我們將所提出的演算法編解碼系統實現在硬體上,並以FPGA模擬驗證,其架構每秒可處理連續20張1024x1024的畫面。
In this paper, a novel shape-adaptive zero tree coding scheme and its hardware realization are presented for the discrete wavelet transform (DWT) based image compression. The shape adaptive scheme can totally eliminate the coding overheads of pixels outside of a video object to save bit rate. The proposed scheme employs a bottom up and breadth first scanning order and each coefficient is examined only once. It can avoid the expensive list buffers required in the SPIHT to save the memory complexity in hardware implementation. The proposed coding scheme is also extended to the 3-D case to handle the medical volumetric data such as MRI. Simulation results indicate that under given bit rates, the plain version (with shape adaptive feature disabled) of the proposed scheme performs slightly better than the SPIHT scheme. Additional 4dB PSNR performance edge over the SPHIT algorithm can be obtained by shape adaptive processing. Its hardwired design is also developed and verified by FPGA. A sustained processing rate of 20 1024x1024 sized frames/sec can be achieved by the derived hardwired design.
目 錄
頁 次
中文摘要 ------------------------------------------------------------- Ⅰ
英文摘要 ------------------------------------------------------------- Ⅱ
誌謝 ----------------------------------------------------------------- Ⅲ
目錄 ----------------------------------------------------------------- Ⅳ
表目錄 --------------------------------------------------------------- Ⅶ
圖目錄 --------------------------------------------------------------- Ⅷ

第一章 緒論 --------------------------------------------------------- 1
1.1多媒體資料壓縮背景及簡介 ------------------------------------------ 1
1.2章節概述 ---------------------------------------------------------- 2

第二章 小波轉換 ----------------------------------------------------- 3
2.1小波轉換理論簡介 -------------------------------------------------- 3
2.2離散小波轉換 (Discrete Wavelet Transformation) -------------------- 5
2.3傳統式小波轉換----------------------------------------------------- 7
2.4上提式小波轉換----------------------------------------------------- 8
2.5適應性形狀離散小波轉換--------------------------------------------- 9

第三章 小波係數編碼技術 --------------------------------------------- 16
3.1漸進式影像傳輸 ---------------------------------------------------- 16
3.2小波編碼的量化方式 ------------------------------------------------ 17
3.3集合分割階層樹編碼法(SPIHT) --------------------------------------- 20
3.3.1小波係數的零樹結構 ---------------------------------------------- 21
3.3.2小波係數的搜尋順序 ---------------------------------------------- 22
3.3.3 SPIHT演算法 ---------------------------------------------------- 22

第四章 形狀適應性由下而上處理之零樹編碼法----------------------------- 26
4.1 SABU-ZTC演算法編碼過程-------------------------------------------- 26
4.1.1 SABU-ZTC演算法-------------------------------------------------- 28
4.1.2小波係數編碼之處理順序------------------------------------------- 31
4.2 SABU-ZTC演算法之特色---------------------------------------------- 31
4.3 SABU-ZTC演算法範例------------------------------------------------ 32
4.3.1編碼端的處理----------------------------------------------------- 34
4.3.2解碼端的處理----------------------------------------------------- 36
4.4 漸進式影像壓縮系統模擬-------------------------------------------- 40

第五章 離散小波轉換技術在醫學影像壓縮上之應用------------------------ 44
5.1數位醫學影像應用--------------------------------------------------- 44
5.2感興趣區域(ROI)的編碼技術------------------------------------------ 45
5.2.1 JPEG2000 中最大位移的ROI 編碼方式(MS-ROI)----------------------- 46
5.2.2 JPEG2000 中以scaling為基礎的ROI 編碼方式(SB-ROI) --------------- 47
5.2.3 使用形狀適應性小波轉換的物件編碼方式(SA-DWT) ------------------- 47
5.2.4 使用形狀適應性小波轉換的ROI編碼方式(SA-ROI)--------------------- 47
5.2.5 使用形狀適應性小波轉換的ROI編碼方式(SA-ROI)之模擬--------------- 50
5.3 SABU-ZTC在三維醫學影像MRI及CT上之應用----------------------------- 52

第六章 離散小波轉換技術在視訊編碼上之應用---------------------------- 53
6.1 採用動態補償之視訊壓縮技術---------------------------------------- 53
6.2 採用離散小波轉換為基礎之視訊壓縮技術------------------------------ 55
6.3 三維小波視訊編碼的樹狀結構---------------------------------------- 56
6.3.1 對稱性樹狀結構-------------------------------------------------- 58
6.3.2 非對稱性樹狀結構------------------------------------------------ 61
6.4 小波轉換低頻部分的壓縮編碼---------------------------------------- 62
6.4.1 低頻部分資訊採用零數編碼處理------------------------------------ 63
6.4.2 微分脈衝編碼調變(DPCM)編碼方式---------------------------------- 63
6.4.3 H.264視訊標準之框內預測(Intra Prediction)編碼方式--------------- 65
6.4.4 小波轉換低頻部分的壓縮編碼模擬比較------------------------------- 66
6.5 不同的濾波器型式對小波視訊編碼效益的影響-------------------------- 67
6.6 形狀適應性三維小波視訊編碼技術------------------------------------ 72

第七章 硬體設計與實現 ----------------------------------------------- 76
7.1 以小波為基礎的編碼系統之架構-------------------------------------- 76
7.2小波係數編解碼器之設計--------------------------------------------- 77
7.2.1 SABU-ZTC編碼端之架構設計---------------------------------------- 78
7.2.2 SABU-ZTC解碼端之架構設計---------------------------------------- 79
7.2.3 FPGA驗證與效能評------------------------------------------------ 80
7.3 適應性形狀離散小波轉換之硬體設計(SA-DWT) ------------------------- 82
7.3.1 SA-DWT之設計---------------------------------------------------- 82
7.3.2 FPGA驗證與效能評估---------------------------------------------- 86
7.4 整合系統設計------------------------------------------------------ 88

第八章 結論及未來發展------------------------------------------------ 91

參考文獻-------------------------------------------------------------- 92
[1] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting schemes, ” The J. of Fourier Analysis and Applications, Vol. 4,247-269, 1997.
[2] C. Valens, “The Fast Lifting Wavelet Transform, ” The Mindless company, 1999.
[3] Badawy, W.; Weeks, M.; Guoqing Zhang; Talley, M.; Bayoumi, M.A.; “MRI data compression using a 3-D discrete wavelet transform,” IEEE Engineering in Medicine and Biology Magazine , Vol. 21 Issue: 4 , Jul/Aug 2002, PP. 95 -103
[4] Yin-Tsung Hwang, Sung-Bo Chen, Shi-Shen Wong, “Efficient shape-adaptive zero tree coding scheme and its FPGA implementation for DWT based progressive coding,” IEEE Signal Processing Systems, Aug. 2003, pp. 357 - 362
[5] Li, S.; Li, W.; Sun, H.; Wu, Z., “Shape adaptive wavelet coding,” IEEE Circuits and Systems, Volume: 5, 1998 , Page(s): 281 -284.
[6] E.S. Kang; J.Y. Lee; J.H. Kim; S.J. Ko; “Arbitrarily-Shaped Wavelet Transform for Image Compression, ” Proceedings of the 40th Midwest Symposium on Circuits and Systems, 1997.Page(s): 1453 -1456.
[7] Shapiro, J.M., “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Signal Processing, Vol. 41 12, Dec. 1993, pp. 3445 –3462.
[8] Yin-Tsung Hwang, Shi-Shen Wang, Yun-Chiang Wang, “Efficient Algorithm and Architecture Designs for MPEG-4 Shape Adaptive Video Object Coding”, Proc. Of the 2001 IEEE Workshop on Signal Processing Systems, pp. 297-308
[9] Li, S.; Li, W.; Sun, H.; Wu, Z., “Shape adaptive wavelet coding,” IEEE Circuits and Systems, Volume: 5, 1998 , Page(s): 281 -284.
[10] Shigeru F., Yurichiro N., “MPEG-4 Video Verification Model verision 16.0,” ISO/IEC March 2000.
[11] Ian H. Witten, Radford M. Neal, J. G. Cleary, “Arithmetric Coding for Data Compression, ” IEEE Communication of the ACM, Vol 30, Number 6, June 1987.
[12] Said, A.; Pearlman, W.A., “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Circuits and Systems for Video Technology, Vol. 6, No.3, June 1996, pp. 243 –250.
[13] Wen-Kuo Lin; Brian Wai-Him Ng; Burgess, N.; Bouzerdoum, A., “Reduced memory zerotree coding algorithm for hardware implementation,” IEEE Multimedia Computing and Systems, vol.2, pp57 – 61, June 1999.
[14] F. W. Wheeler and W. A. Pearlman, “SPIHT Image Compression without Lists,” IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2000), Istanbul, Turkey, June 5-9, 2000.
[15] Shapiro, J.M., “Embedded image coding using zerotrees of wavelet coefficients,” IEEE signal processing, volume: 41 12, page(s): 3445 –3462, dec. 1993.
[16] Li, S.; Li, W.; Sun, H.; Wu, Z., “Shape adaptive wavelet coding,” IEEE Circuits and Systems , vol.5, pp. 281-284, June, 1998.
[17] Shipeng Li; Weiping Li, “Shape-adaptive discrete wavelet transforms for arbitrarily shaped visual object coding,”
[18] Yin-Tsung Hwang, Sung-Bo Chen, Shi-Shen Wong, “Efficient shape-adaptive zero tree coding scheme and its FPGA implementation for DWT based progressive coding,” IEEE Signal Processing Systems, pp. 357 - 362, Aug. 2003.
[19] ISO/IEC 15444-1, JPEG2000 Image Coding System.
[20] ISO/IEC 15444-2, JPEG2000 Image Coding System:Extensions.
[21] I. Ueno and W. A. Pearlman,"Region of Interest Coding in Volumetric Images with Shape-Adaptive Wavelet Transform," SPIE/IS&T Electronic Imaging 2003, Proceedings SPIE Vol. 5022, Jan. 2003 (in press).
[22]楊仁華,2003, “以個人電腦叢集技術支援高效能與安全之醫學影像傳送系統之建置與研究”,臺中健康暨管理學院/資訊管理研究所,碩士論文。
[23] ISO/IEC 11172: Information Technology – Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to about 1.5 Mbits/s, ISO/IEC JTC1/SC29, 1993.
[24] ISO/IEC DIS 13818: Information Technology – Generic Coding of Moving Pictures and Associated Audio Information, ISO/IEC JTC1, 1994.
[25] T. J. Burns, S. K. Rogers, M. E. Oxley, and D.W. Ruck, “A wavelet multiresolution analysis for spatio-temporal signals,” IEEE Trans. Aerosp. Electron. Syst., vol. 32, pp. 628–649, Apr. 1996.
[26] B. Kim, Z. Xiong, and W. A. Pearlman, “Low bit rate, scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT),” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 1374–1387, Dec. 2000.
[27] Beong-Jo Kim, William A. Pearlman , “An embedded wavelet video coder using three-dimensional set partitioning in hierarchical trees (SPIHT),” in Proc. Data Compression Conf., Mar. 1997, pp. 251–260.
[28] Wen-Kuo Lin, Neil Burgess, “3-D listless zerotree coding for low-bit-rate video,” in Proc. Int. Conf. Image Processing, vol. 3, 1999, pp. 762–766.
[29] G. Minami, Z. Xiong, A. Wang, P. A. Chou, and S. Mehrotra, “3-D wavelet coding of video with arbitrary regions of support,” in Conf. Rec. 33rd Asilomar Conf. Signals, Systems, and Computers, vol. 2, 1999, pp. 1422–1425.
[30] A. Wang, Z. Xiong, P. A. Chou, and S. Mehrotra, “Three-dimensional wavelet coding of video with global motion compensation,” in Proc. Data Compression Conf., 1999, pp. 404–413.
[31] Z. Xiong, B. Kim, and W. A. Pearlman, “Multiresolutional encoding and decoding in embedded image and video coders,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, vol. 6, 1998, pp. 3709–3712.
[32] He C, Dong J, Zheng YF, Gao Z (2003), Optimal 3-D Coefficient Tree Structure for 3-D Wavelet Video Coding, IEEE Transactions on CSVT, 13:961-972
[33] Rissanen, J.; Langdon, G. G., “Arithmetic coding,“ IBM J. Res. De., 23(2) , 1979, pp. 149 -162.
[34] Langdon, G. G., “An Introduction to Arithmetic coding, “ IBM J. Res. De., 28(2) , 1985, pp. 135 -149.
[35] Shiann-Rong Kuang; Jer-Min Jou; Yuh-Lin Chen, “The Design of an Adaptive On-Line Binary Arithmetic-Coding Chip,” Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on , Vol. 45 Issue: 7 , Jul 1998, pp. 693 -706
[36] 戴顯權,陳瀅如,王春清,2002, “多媒體通訊”,紳藍。
[37] 王旭昇,2002 ,“以二維形狀適應上提式小波轉換來設計與實現漸進式影像壓縮的編解碼系統”, 國立雲林科技大學電子與資訊工程研究所,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top