跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 02:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡振宇
研究生(外文):Chen-yu Tsai
論文名稱:可適性調變於多載波無線區域網路之研究
論文名稱(外文):Research on Adaptive Modulation for Multi-carrier WLAN
指導教授:黃穎聰黃穎聰引用關係
指導教授(外文):Yin-Tsung Hwan
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:70
中文關鍵詞:可適性調變正交分頻多工無線區域網路
外文關鍵詞:Adaptive ModulationWLANOFDM
相關次數:
  • 被引用被引用:2
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
正交分頻多工(OFDM)已被廣泛地應用於各種無線通訊系統中,而IEEE 802.11a則是無線區域網路中常見的規範之一。正交分頻多工傳輸技術有種固有的彈性,可根據接收端所得到的通道品質來對每個子通道使用不同的調變形式。無線通道中的頻寬是有限且珍貴的資源,所以有效的使用頻寬變得非常重要。在這篇論文中,我們根據IEEE 802.11a的規範來建立系統模擬平台,並將可適性子載波調變的方法實現於此系統中,以達到最佳的頻寬(傳輸率)使用。本文模擬兩個可適性調變方法於兩種不同的室內多重路徑通道。模擬的結果顯示出在容許的誤差下,將可有效的提升傳輸速率,並且超越沒有多重路徑衰減的效能。
Orthogonal Frequency Division Multiplexing (OFDM) has already been widely applied to various kinds of wireless communication system, IEEE 802.11a [1] is one of the common standards in Wireless-LAN. The OFDM transmission technique has the inherent flexibility to adapt the modulation scheme on each sub-carrier according to the reception quality. Since bandwidth in wireless channel is limited and precious, the effective utilizes bandwidth becomes very important. In this thesis, we set up the system simulation platform according to IEEE 802.11a standard, and realize the method of adaptive sub-carrier modulation in this system, to reach the best bandwidth (transmitting rate) utility. In this thesis, we simulated two adaptive modulation methods in two different in-door multi-path channels. The result of simulation demonstrates that under the error that is permitted, the proposed scheme can improve the transmission rate effectively, and surpass the performance without multi-path fading.
中文摘要 -------------------------------------------------- Ⅰ
英文摘要 -------------------------------------------------- Ⅱ
誌謝 -------------------------------------------------- Ⅲ
目錄 -------------------------------------------------- Ⅳ
表目錄 -------------------------------------------------- Ⅵ
圖目錄 -------------------------------------------------- Ⅶ
一、 緒論
1.1 正交分頻多工之簡介 ------------------------------- 1
1.2 研究動機 ----------------------------------------- 2
1.3 論文架構 ----------------------------------------- 4
二、 背景知識
2.1 前言 --------------------------------------------- 5
2.2 正交分頻多工的基本觀念 --------------------------- 5
2.2.1 正交分頻多工與多載波傳輸 ------------------------- 6
2.2.2 快速傅利葉轉換 ----------------------------------- 7
2.2.3 保護區間與循環延展 ------------------------------- 8
2.2.4 正交分頻多工的系統架構 --------------------------- 10
2.3 IEEE 802.11a實體層規範 --------------------------- 11
2.3.1 無線區域網路之簡介 ------------------------------- 11
2.3.2 IEEE 802.11a實體層架構概括 ----------------------- 12
2.3.3 前序區塊 ----------------------------------------- 15
2.3.4 信號區塊 ----------------------------------------- 17
2.3.5 資料區塊 ----------------------------------------- 19
2.3.6 實體層結構方塊圖之說明 --------------------------- 20
三、 模擬環境與平台設定
3.1 模擬環境之簡介 ----------------------------------- 28
3.2 多重路徑衰減通道 --------------------------------- 28
3.2.1 通道的傳輸延遲擴散 ------------------------------- 29
3.2.2 多重路徑衰減通道模型 ----------------------------- 30
3.3 錯誤模型 ----------------------------------------- 31
3.3.1 載波頻率偏移模型 --------------------------------- 31
3.3 取樣頻率偏移模型 --------------------------------- 33
3.4 系統平台描述 ------------------------------------- 34
3.5 系統平台之摸擬 ----------------------------------- 37
3.5.1 系統參數設定 ------------------------------------- 38
3.5.2 模擬結果 ----------------------------------------- 39
四、 適應性調變
4.1 前言 --------------------------------------------- 41
4.2 適應性調變之簡介 --------------------------------- 41
4.2.1 適應性調變之系統概觀 ----------------------------- 43
4.2.2 通道特性估測 ------------------------------------- 45
4.2.3 可適性方法的挑戰性 ------------------------------- 47
4.3 通道資訊容量 ------------------------------------- 48
4.4 相關研究 ----------------------------------------- 51
4.4.1 以位元錯誤率為目標之方法 ------------------------- 52
4.4.2 固定傳輸率之方法 --------------------------------- 53
4.5 結語 --------------------------------------------- 54
五、 系統與演算法介紹
5.1 系統模型 ----------------------------------------- 55
5.1.1 訊號雜訊比之估測 --------------------------------- 55
5.1.2 系統描述 ----------------------------------------- 56
5.2 可適性方法與模擬 --------------------------------- 57
5.2.1 方案一 ------------------------------------------- 58
5.2.2 方案二 ------------------------------------------- 60
六、 結論與未來研究方向
6.1 結論 --------------------------------------------- 66
6.2 未來研究方向 ------------------------------------- 67
參考文獻 -------------------------------------------------- 68
[1]IEEE Std. 802.11a, 1999, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5GHz Band”
[2]C-J Ahn and L. Sasase, 2002, “The effects of modulation combination, target BER, Doppler frequency, and adaptation interval on the performance of adaptive OFDM in broadband mobile channel,” Consumer Electronics, IEEE Trans., vol. 48, pp.167-174, February.
[3]L. Hanzo, W. Webb and T. Keller, 2000, Single- and Multi-carrier Quadrature Amplitude Modulation, John Wiley & Sons, New York.
[4]R. van Nee and R. Prasad, 2000, OFDM Wireless Multimedia Communications, Artech House, Boston.
[5]J. Heiskala and J. Terry, 2001, OFDM Wireless LANs: A Theoretical and Practical Guide, Sams, USA.
[6]Bob O’Hara, et al, 1999, the IEEE 802.11 Handbook: A Designer’s Companion, Standards Information Network IEEE Press, USA.
[7]M. Engels, 2002, Wireless OFDM Systems: How to make them work?, Kluwer Academic Publishers, Boston.
[8]R. Chang, 1966, “Synthesis of band-limited orthogonal signals for multichannel datatransmission,” BSTJ, vol. 46, pp.1775~1796, December.
[9]T. Keller and L. Hanzo, 2000, “Adaptive Modulation Techniques for Duplex OFDM Transmission,” IEEE Transaction on Vehicular Technology, vol. 49, No. 5, September.
[10]Simon Haykin, 2000, Communication Systems, 4th edition, John Wiley & Sons, New York.
[11]J. G. Proakis, 2000, Digital Communications, 4th edition, McGraw-Hill, New York.
[12]L. Kalet, 1989, “The Multitone Channel,” IEEE Transactions on Communications, vol. 37, no. 2, February.
[13]J. A. G. Bingham, 2000, “ADSL, VDSL and Multicarrier Modulation,” John Wiley & Sons, New York.
[14]R.Steele and W.Webb, 1991, “Variable rate QAM for data transmission over Rayleigh fading channel,” Proc. in wireless, pp.1~14, Calgary, Alberta, Canada.
[15]R.Steele and W.Webb, 1995, “Variable rate QAM for mobile radio,” IEEE Transactions on Communications, vol.43, no.7, pp. 2223~2230, July.
[16]C.Y.Wong, R.S.Cheng, K.B.Letaief, R.D.Murch, 1999, “Multiuser Subcarrier Allocation for OFDM Transmission using Adaptive Modulation,” VTC, vol.1, pp.479~483, May.
[17]C.Y.Wong, R.S.Cheng, K.B.Letaief, R.D.Murch, 1999, “Multiuser OFDM with Adaptive Subcarrier, Bit, and Power Allocation,” IEEE Journal on selected areas in communications, vol.17, no.10, pp.1747~1758, October.
[18]A.G.Armada, 2001, “A Simple Multiuser Bit Loading Algorithm For Multicarrier WLAN,” ICC, vol.4, pp.1168~1171, June.
[19]Z.Zhang, Y.Zhao and Y.Ya, 2002, “Adaptive Modulation and Power Allocation for Multicarrier DS/CDMA,” circuits and systems and west sino expositions, IEEE conf., vol.1, pp.243~246.
[20]J.Jang and K.B.Lee, 2003, “Transmit Power Adaptation for Multiuser OFDM Systems,” IEEE Journal on selected areas in communications, vol.21, no.2, pp.171~178, February.
[21]J.Torrance and L.Hanzo, 1996, “Optimisation of switching levels for adaptive modulation in a slow Rayleigh fading channel,” Electronics Letters, vol.32, pp.1167~1169, June.
[22]T.Keller and L.Hanzo, 1999, “Sub-band adaptive pre-equalised OFDM transmission,” VTC, vol.1, pp.334~338, May.
[23]T.Keller and L.Hanzo, 2000, “Adaptive Multicarrier Modulation: A Convenient Framework for Time-Frequency Processing in Wireless Communications,” proceedings on the IEEE, vol.88, no.5, pp.611~640, May.
[24]T.Keller and L.Hanzo, 2000, “Adaptive modulation techniques for duplex OFDM transmission,” IEEE transactions on Vehicular Technology, vol.49, no.5, pp.1893~1906, September.
[25]S.Ye, R.S.Blum and L.J.Cimini, 2002, “Adaptive Modulation for Variable-Rate OFDM Systems with Imperfect Channel Information,” VTC, vol.2, pp.767~771, May.
[26]C.-J.Ahn and L.Sasase, 2002, “THE EFFECTS OF MODULATION COMBINATION, TARGET BER, DOPPLER FREQUENCY, AND ADAPTATION INTERVAL ON THE PERFORMANCE OF ADAPTIVE OFDM IN BROADBAND MOBILE CHANNEL,” vol.48, no.1 , pp.167~174.
[27]B.Choi and L.Hanzo, 2003, “Optimum Mode-Switching- Assisted Constant-Power Single- and Multicarrier Adaptive Modulation,” IEEE transactions on Vehicular Technology, vol.52, no.3, pp.536~560, May.
[28]L.Piazzo, 1999, “Fast algorithm for power and bit allocation in OFDM,” Electronics Letters, vol.35, no.25, pp.2173~2174, December
[29]T.Keller, M.Munster and L.Hanzo, 2000, “A Turbo-Coded Burst-by-Burst Adaptive Wide-Band Speech Transceiver,” IEEE Journal on selected areas in communications, vol.18, no.11, pp.2363~2372, November
[30]R.Grunheid, E.Bolinth and H.Rohling, 2001, “A Blockwise Loading Algorithm for the Adaptive Modulation Technique in OFDM systems,” VTC, vol.2, pp.948~951, October
[31]M.Munster and L.Hanzo, 2002, “MMSE Channel Prediction Assisted Symbol-by-symbol Adaptive OFDM,” ICC, vol.28, pp.416~420.
[32]D.Dardari, M.G.Martini, M.Milantoni and M. Chiani, 2000, “MPEG-4 VIDEO Transmission in the 5GHz Band Through an Adaptive OFDM Wireless Scheme,” IEEE international symposium on personal, indoor and mobile radio communications, vol.4, pp.1680~1684, September.
[33]P.Krishnamurthy, J.Benear, M.Marku and K.Pahlavan, 1999, “Modeling of the Wideband Indoor Radio Channel for Geolocation Applications in Residential Areas,” VTC, vol.1, pp.175~179, May.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top