跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 10:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳家慶
研究生(外文):Chia-Ching Wu
論文名稱:奈米碳管低溫製程技術與電傳導特性之研究分析
論文名稱(外文):The Study of the Low Temperature Process Development and the Electrical Conduction Mechanism for Carbon Nanotubes
指導教授:黃柏仁黃柏仁引用關係黃建盛黃建盛引用關係
指導教授(外文):Bohr-Ran HuangChien-Sheng Huang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:107
中文關鍵詞:拉曼光譜儀退火電傳導機制奈米碳管X光光電子能譜分析儀電流 -電壓量測儀
外文關鍵詞:XPSI-V measurementRaman spectrumelectrical conduction mechanism.multiwall carbon nanotubes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將探討利用微波電漿化學氣象沉積法於低溫(<520℃)成長奈米碳管之技術,並利用不同溫度退火之步驟改善其電傳導特性。選擇退火程序是因低溫成長奈米碳管會因成長溫度之不足而使石墨結構產生缺陷,利用退火修補其缺陷,已獲得較佳的電傳導特性。我們亦利用場發射式掃瞄電子顯微鏡、穿透式掃瞄電子顯微鏡、拉曼光譜儀、X光光電子能譜分析儀、能量散佈光譜儀、電流-電壓量測儀和電容-電壓量測儀等設備分析其物理特性和電傳導特性。
我們將奈米碳管進行不同溫度之退火處理,結果顯示,由場發射式掃瞄電子顯微鏡圖中可發現經過不同溫度退火之奈米碳管其表面型態並無多大之改變。由拉曼ID/IG之比值及電流-電壓分析可得知低溫下成長之奈米碳管經400℃左右之退火溫度可獲得最佳之電子傳導特性,但經更高溫之回火處理我們可從X光光電子能譜分析儀發現奈米碳管有嚴重的氧化現象,且從C1s、Si2p和O1s之分析中可推得有SiO2和SiC之鍵結產生,此現象也造成電流-電壓分析中之電流下降,使電傳導特性變差。
電特性模擬方面,我們推斷探針和碳管之間為一M-S接面,因此選擇兩顆背對背之蕭基二極體來做為模擬之電路,並由蕭基二極體電流公式可得 在300℃退火之條件下會有減少的趨勢,由公式反推可得電流密度(J)會上升,經600℃退火之條件則反之,我們成功的利用此電路模型模擬出電流-電壓特性曲線。
In this dissertation, the MPCVD was used to grow the multiwall carbon nanotubes (MWNTs) at low temperatures (<520℃). At the same time, the annealed process was to rearrange the carbon atoms and get more graphitization structure. Since the carbon atoms at low temperature can’t possess enough energy to arrange in order completely and the graphite layer could form defective structure with pentagons and heptagons in MWNTs. In addition, several kinds of instruments were used to analyze the physical properties and electrical conduction mechanism, including the Scanning electron microscopy (SEM)、Transmission Electron Microscopy (TEM)、Energy dispersive X-ray analyses (EDS)、X-ray photoelectron spectroscopy (XPS)、Raman scattering spectrometer、I-V measurement system and C-V measurement system.
From the Raman spectra, it was found that the ID/IG ratio of MWNTs decreased after annealing, indicating that more graphenes were formed by the annealing process. In the XPS analysis, it was observed that the ratio of the oxygen to carbon (O/C) signal intensity was increased for the increased annealed temperatures of MWNTs and a Si signal was found on the surface of MWNTs after annealing at 600℃.
From the C 1s spectra, in addition to the C-C (284.6 eV) bond for the unannealed MWNTs, the C-C (284.7 eV), C-Si (283.8 eV) and C-O (287.3 eV) bonds were also found on the surface of the annealed MWNTs. This indicated that the MWNTs were oxygenated and partly silicided at high-temperature annealing process.
The equivalent circuit for the metal/MWNTs/metal (MIM) sandwich structure could be represented as two Schottky barrier diodes in a back-to-back configuration. From the data fitting, it was found that the Schottky barrier height ( ) was decreased and the current density (J) was increased when the MWNTs was annealed at 300℃. Moreover, the Schottky barrier height ( ) was increased due to the formation of silicon carbide (SiC) and silicon dioxide (SiO2) on the surface of the MWNTs when the annealed temperature was 600℃.
Contents
Abstract (Chinese) .....…………………………………….....Ⅰ
Abstract (English) ……………………………………..........Ⅲ
Contents ………………………………………...……...........Ⅴ
Acknowledgements …..…………….…………………..........Ⅸ
List of Figures ………..………….………………...…….....Ⅹ
List of Tables ………..……….…………………...……….XV

Chapter 1. Introduction …..………………………...……………...1
1.1 Research background ………….………………………………1
1.2 Application and development of carbon nanotubes …………...3
1.3 Motivation and objective of research …………………………7
Chapter 2. Theory …………………………………………….…….8
2.1 Growth mechanism of carbon nanotubes .……………………..8
2.2 Sttucture and characteristics of carbon nanotubes ……………10
2.3 Synthesis methods of carbon nanotubes ……….……………14
2.3.1 Arc discharge …………………………………………14
2.3.2 Laser vaporization ……………………………………15
2.3.3 Catalyst chemical vapor deposition …………………..16
2.4 Thermionic emission theory …………………………..……..20
2.5 Ideal Capacitance-Voltage characteristics ……………..……..23
Chapter 3. Instrument …………………………...….…………..27
3.1 Growth instrument ……………………………………………27
3.1.1 Ion Beam Sputtering System …………………………27
3.1.2 Microwave plasma chemical vapor deposition ...….....28
3.1.3 RF Sputtering System ………………………………..30
3.2 Analysis instrument ……………………..................................32
3.2.1 Scanning electron microscopy (SEM) ….....................32
3.2.2 Transmission Electron Microscopy (TEM) …………..32
3.2.2 Energy dispersive X-ray analyses (EDS) .....................32
3.2.3 X-ray photoelectron spectroscopy (XPS) …………….32
3.2.4 Raman scattering spectrometer ….................................33
3.2.5 I-V measurement system ………..................................35
3.2.6 C-V measurement system .............................................35
Chapter 4. Experiment Details ......................................................38
4.1 Experiment flow chart ………………………………………..38
4.2 The growth of carbon nanotubes …..........................................39
4.2.1 Pretreament of substrate …………...............................39
4.2.2 Catalyst deposition …………………………………...39
4.2.3 Hydrogen plasma etching …………………………….39
4.2.4 Growth of carbon nanotubes ………………………….41
4.3 Annealing process of carbon nanotubes ……………………...43
4.4 The electrical properties measurement of carbon nanotubes …44
4.4.1 Fabrication of the MIM structure …………………….44
4.4.2 Fabrication of the MIS structure ……………………...45
Chapter 5. Result and Discussion ………………………….……48
Part one:MIM structure ……………………………………………48
5.1.1 Deposition conditions of CNTs ….…………………….48
5.1.2 SEM images of CNTs …………………………………...50
5.1.3 TEM images of CNTs ………………………………….53
5.1.4 EDX results ……………………………………………..55
5.1.5 Raman results ……………………..……………………58
5.1.6 XPS results ………………..……………………………61
5.1.7 I-V measurement results ………………………………65
5.1.8 The model simulation of I-V traces …..…………………67
Part two:MIS structure ……………………………………………70
5.1.5 Raman results ……………………..……………………70
5.1.6 XPS results ………………..……………………………72
5.1.7 I-V measurement results ………………………………74
5.1.8 C-V measurement results ………………………………77
5.1.9 The model simulation of I-V traces …..…………………81
Part three:MIM structure (Metal contact) …………………………86
5.1.5 Raman results ……………………..……………………86
5.1.6 XPS results ………………..……………………………88
5.1.7 I-V measurement results ………………………………90
5.1.8 The model simulation of I-V traces …..…………………92
Chapter 6. Conclusion ……….........................................................97
Reference ………….………………………………………………….99
Appendix ( High vacuum measurement system ) ………….……….104
Reference

[1] R. Satio, G. Dresselhaus and M. S. Dresselhaus “ Physical Properties of
Carbon Nanotubes” Imperial College Press (1998).
[2] H.W.Kroto, J.R.Heath, S.C.O''Brien, R.F.Curl, R.E.Smalley, Nature 318, (1985) 162.
[3] S. Iijima, Nature 354 (1991) 56.
[4] W.A. de Heer, A. Chatelain, D. Ugarte, Science 270 (1995) 1179.
[5] A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, et al., Science 269 (1995) 1550.
[6] L.A. Chernozatonskii, Y.V. Gulyaev, Z.Y. Kosakovskaya, N.I. Sinitsyn, G.V. Torgashov, Y.F. Zakharchenko, et al., Chem. Phys. Lett. 233 (1995) 63.
[7] A.A. Talin, K.A. Dean, J.E. Jaskie, Solid-State Electron. 45(2001) 963.
[8] Y. Saito, S. Uemura, Carbon 38 (2000) 169.
[9] J.M. Bonard, H. Kind, T. Stockli, L.O. Nilsson, Solid-State Electron. 45 (2001) 893.
[10] W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Appl. Phys. Lett. 75 (1999) 3129.
[11]T. W. Ebbesen, Carbon Nanotubes, CRC Press, Inc, New York, (1997) p.9
[12] W. A. de Heer, A. Chatelain, D. Ugarte, Science 270(1995) 1179.
[13] Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., Science, 297, (5582), 787-792, 2002
[14] D.Rotman, Natuur & Techniek, 70, (6), 30-37, 2002
[15] http://www.photon.t.u-tokyo.ac.jp/%7Emaruyama/nanotube/nanotube.html.
[16] Y. Ye, C. C Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K. A. Smith, R. E. Smalley Apl. Phys. Lett. 74 (1999) 2307.
[17] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Coblert, R. E. Smalley Nature 384 (1996) 147. 99
[18] T. Uchihashi, N. Choi, M. Tanigawa, M. Ashino, Y. Sugawara, H. Nishijima, S. Akita, Y. Nakayama, H. Tokumoto, K. Yokoyama, S. Morita, M. Ishikawa, Jpn. J. Appl. Phys. 39 (2000) L887.
[19] S. Jarvis, T. Uchihashi, T. Ishida, H. Tokumoto, Y. Nakayama, J. Phys. Chem. B 104 (2000) 6091.
[20] M. Ishikawa, K. Ojima, M. Yoshimura, K. Ueda, in preparation.
[21] R.J. Nemanich, S. A. Solin, Phys., 20 (1979) 392.
[22] Sinnot, S.B., Andrewa, R., Qian, D., Rao, .M., Mao, Z., Dickly, E.C., and Derbyshire, F., Chem. Phys. Letter., 315, (25-30,1999)
[23] N. Hamada, S. Sawada, A. Oshiyama, New One-Dimensional Conductors : Graphitic Microtubules, Phys. Rev. Lett. 68, (1992) p1581.
[24] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60, (1992) p2204.
[25] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature 391, (1998) p59.
[26] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Atomic structure and electronic properties of single walled carbon nanotubes, Nature 391, (1998) p62.
[27] Jung, S. H., Kim, M. R., Jeong, S. H., Kim, S. U., Lee, O.J., Applied Physics A-Materials Science & Processing, 67, (2), 285-286, 2003.
[28] Ebbesen, T. W. and Ajayan, P.M., Nature, .358 (220-222, 1992)
[29] Z. C. Feng, A. J. Mascarenhas, W. J. Choyke, J. A. Powell, J. Appl. Phys., 61 (1988) 3176.
[30] Hui Lin Chang, Chao Hsun Lin, Cheng Tzu Kuo, Diamond and Related Materials, 11 (2002) 793-798.
[31] Ren, Z. F., and Huang, Z. P., Wang, D. Z., Wen, J. G., Xu J. W., Wang, J. H., Calvet, L. E., Chen, J., Klemic, J. F., and Reed, M. A., Applied Physic Letters, 75, (8), 1999
[32] Neamen, “ Semiconductor Physics and Devices: Third Edition , CH9.
[33] Neamen, “ Semiconductor Physics and Devices: Third Edition , CH10.
[34] F. Tuinstra, J. Chiem. Phys., 53 (1970) 1126.
[35] C. J. Lee,Y. S. Park, W. S. Kim, N. S. Lee, J. M. Kim, Y.G. Choi, S.C. Yu, Appl. Phys. Lett. 75 (1999) 1721.
[36] Y.C. Choi, D.j. Bae, Y.H. Lee, B.S. Lee, I.T. Han, W.B. Choi, Synthetic Metal. 108 (2000) 159.
[37] Ajayan, P. M. and Zhou, O. Z., Carbon Nanotubes, 80, (391-425, 2001
[38] T. Guo, P. Nikolaev, A. Thess, D. T. Collbert and R. E. Smally, Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett. 243, (1995) p49.
[39] B. I. Yakobson and R. E. Smally, American Scientist 85, (1997) 324.
[40] T. Tharigen, G. Lippold, V. Riede, M. Lorenz, K. J.Koivusaari, D. Lorenz, S. Mosch, P Grau, R. Hesse, Thin Solid Film, 348 (1999) 103.
[41] N. MONCOFFRE, G. HOLLINGER, H. JAFFREZIC, G. MAREST, J. TOUSSET. Nuclear Instruments and Methods in Physics Research B7/8, 177-183, 1985.
[42] J.P. COUTURES, R. ERRE, D. MASSIOT, C. LANDRON, D. BILLARD, G. PERAUDEAU. Radiation Effects, Vol 98, 83-91, 1986.
[43] C.D. WAGNER, W.M. RIGGS, L.E. DAVIS, J.F. MOULDER. Perking-Elmer Corporation, Physical Electronics Division.
[44] S. CONTARINI, S.P. HOWLETT, C. RIZZO, B.A. DE ANGELIS. Applied Surface Science, Vol 51, 177-183, Mar 1991.
[45] V.I. NEFEDOV, D. GATI, B.F. DZHURINSKII, N.P. SERGUSHIN, YA. V. SALYN. Russian Journal of Inorganic Chemistry, Vol 20, 2307-2314, 1975.
[46] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of CNTs, Imperial College Press, London, (1999).
[47] P.H. Tan , C.Y. Hu , F. Li , S. Bai , P.X. Hou , H.M. Cheng, Carbon. 40 (2002) 1131
[48] M. Corrias , Ph. Serp , Ph. Kalck , G. Dechambre , J.L. Lacout , C. Castiglioni , Y. Kihn. Carbon 41 (2003) 2361–2367
[49] Zhao X, Ando Y. Jpn J Appl Phys. 37 (1998) 4846.
[50] J.S. Gao , K. Umeda , K. Uchino , H. Nakashima , K. Muraoka. Materials Science and Engineering A352 (2003) 308-313
[51] Hui Lin Chang, Chao Hsun Lin, Cheng Tzu Kuo, Diamond and Related Materials, 11 (2002) 793-798.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top