|
[1]E. N. Lorenz, “Deterministic nonperiodic flow,” J. of Atmos. Sci., Vol. 20, pp. 130-141, 1963. [2]G. Lin and L. O. Chua, “Canonical Realization of Chua’s Circuit Family,” IEEE Trans. Circuit Sys., vol.37, pp.885-902, 1990. [3]D. Romano, M. B. Vati and F. Meloni, ”Chua’s Atom,” Int. J. of Bifur. Chaos, vol.6, pp.1153-1157, 1999. [4]G. Chen, “Controlling Chua’s Global Unfolding Circuit Family,” IEEE Trans. Circuits Sys., vol.40, pp.829-832, 1993. [5]L. Pivka, C. W. Wu and A. Huang, ”Lorenz equation and Chua’s equation,” Int. J. of Bifur. Chaos, vol.6, pp.2443-2489, 1996. [6]A. Volkovskii, ”Synchronization of chaotic systems using phase control,” IEEE Trans. Circuits Sys., vol.44, pp.913-917, 1997. [7]S. Mascolo and G. Grassi, ”Controlling chaotic dynamics using backstepping design with application to the Lorenz system and Chua’s circuit,” Int. J. of Bifur. Chaos, vol.9, pp.1425-1434, 1999. [8]Y. Z. Yin, ”Synchronization of chaos in a modified Chua’s circuit using continuous control,” Int. J. of Bifur. Chaos, vol.6, pp.2101-2117, 1996. [9]H. Lenz and D. Obradovic, ”Robust control of the chaotic Lorenz system,” Int. J. of Bifur Chaos, vol.7, pp.2847-2854, 1997. [10]G. Chen and X. Dong, ”On feedback control of chaotic continuous-time systems,” IEEE Trans. Circuits Sys., vol.40, pp.591-601, 1993. [11]J. A. K. Suykens, P. F. Curran and L. O. Chua, ”Master-slave synchronization using dynamic output feedback,” Int. J. of Bifur. Chaos, vol.7, pp.671-679, 1997. [12]T. Yang and L. O. Chua, ”Impulsivee stabilization for control and synchronization of chaotic systems: theory and application to secure communication,” IEEE Trans. Circuits Sys., vol.44, pp.976-988, 1997. [13]T. L. Carroll and L. M. Pecora, “Synchronizing chaotic circuits,” IEEE Trans. Circuits Sys., vol. 38, pp. 453-456, 1991. [14]O. Morgül and E. Solak, “Observer based synchronization of chaotic systems,” Physical Review E, vol. 54, pp. 4803-4809, 1996. [15]H. Nijmeijer and I. M. Y. Mareels, “An observer looks at synchronization,” IEEE Trans. on Circuits and Systems-I, vol. 44, pp. 882-890, 1997. [16]G. Grassi and S. Mascolo, “Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal,” IEEE Trans. on Circuits and Systems-I, vol. 44, pp. 1011-1014, 1997. [17]M. Boutayeb, M. Darouach and H. Rafaralahy, “Generalized state-space observers for chaotic synchronization and secure communication,” IEEE Trans. on Circuits and Systems-I, vol. 49, pp. 345-349, 2002. [18]M. Feki and B. Robert, “Observer-based chaotic synchronization in the presence of unknown inputs,” Chaos, Solitons and Fractals, vol. 15, pp. 831-840, 2003. [19]K. M. Short, “Steps toward unmasking secure communications,” Int. J. of Bifurcation and Chaos, vol. 4, pp. 959-977, 1994. [20]K. M. Short, “Unmasking a modulated chaotic communications scheme,” Int. J. of Bifurcation and Chaos, vol. 6, pp. 367-375, 1996. [21]T. Yang, C. W. Wu and L. O. Chua, “Cryptography based on chaotic systems,” IEEE Trans. on Circuits and Systems-I, vol. 44, pp. 469-472, 1997. [22]A. Rulkov, H. Nijmeijer, and A. Markov, “Adaptive observer-based synchronization for communication,” Int. J. Bifurcation Chaos, vol. 10, pp. 2807–2813, 2000. [23]M. D. Bernardo, “An adaptive approach to the control and synchronization of continuous-time chaotic systems,” Int. J. Bifurcation Chaos, vol. 6, pp. 557–568, 1996. [24]J. K. John and R. E. Amritkar, “Synchronization by feedback and adaptive control,” Int. J. Bifurcation Chaos, vol. 4, pp. 1687–1695, 1994. [25]J.Wang and X.Wang, “Parametric adaptive control in nonlinear dynamical systems,” Int. J. Bifurcation Chaos, vol. 8, pp. 2215–2223, 1998. [26]A. K. Kozlov, V. D. Shalfeev, and L. O. Chua, “Exact synchronization of mismatched chaotic systems,” Int. J. Bifurcation Chaos, vol. 6, pp. 569–580, 1996. [27]C. W. Wu, Y. Tao, and L. O. Chua, “On adaptive synchronization and control of nonlinear dynamical systems,” Int. J. Bifurcation Chaos, vol. 6, pp. 455–471, 1996. [28]A. L. Fradkov and A. Y. Markov, “Adaptive synchronization of chaotic systems based on speed gradient method and passification,” IEEE Trans .Circuits Syst. I, vol. 44, pp. 905–912, Oct. 1997. [29]A. Y. Pogromsky, “Passivity based design of synchronizing systems,” Int. J. Bifurcation Chaos, vol. 8, pp. 295–319, 1998. [30]Kuang-Yow Lian and Peter Liu, “Adaptive synchronization design for chaotic systems via a scalar driving signal,” IEEE Trans .Circuits Syst. I, vol. 49, pp. 17–27, Jan. 2002. [31]Petros A. Ioannou and Jing Sun, “Robust adaptive control,” Prentice Hall PTR, 1996. [32]陳永平,可變結構控制設計,全華科技股份有限公司,台北,1999。
|