跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 21:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳乃文
研究生(外文):Nai-Wen Wu
論文名稱:以場效函數為基礎的自動導航車路徑規劃
論文名稱(外文):A Potential-field-based Method for Path Planning of Autonomous Guided Vehicles
指導教授:吳佳儒吳佳儒引用關係
指導教授(外文):Chia-Ju Wu
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:71
中文關鍵詞:沿牆前進法路徑規劃自動導航車場效函數
外文關鍵詞:potential fieldpath planningwall followingautonomous guided vehicles
相關次數:
  • 被引用被引用:15
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主要目的是著重於研究如何應用場效函數這種方法,在一未知的環境中進行自動導航車路徑規劃的工作,該未知環境中充滿各種可能的障礙物,而路徑規劃的目的則是自動導引自走車,使其由一起始姿態,以無碰撞的方式,到達一終止狀態。在所提方法中將提出“可見性”的觀念,並結合沿牆前進法,以解決場效函數理論中局部極小值問題,而所提方法的正確性則將由電腦模擬的方式加以證實。
Based on the potential field function, the main purpose of this thesis is to propose a method for path planning of autonomous guided vehicles (AGVs) in an unknown environment. The objective of path planning is to find a collision-free path to navigate the AGVs from an initial configuration to a desired final configuration. To solve the problem of local minimum in potential field function, the concept of “visibility” and the wall-following method are combined. To show the feasibility and validity of the proposed method, compute simulation is included for illustration.
第一章 序論
1.1 前言
1.2 研究動機與目的
1.3 文獻回顧
1.3.1 追蹤導航
1.3.2 規劃導航
1.3.3 反應導航
1.4 論文架構
第二章 各式環境辨識感測器之介紹
2.1 紅外線感測器之介紹
2.1.1 紅外線感測原理及簡介
2.1.2 紅外線感測器外觀與特性
2.2 超音波感測器之介紹
2.2.1 超音波原理概論
2.2.2 超音波感測器性質
2.2.3 超音波感測器之檢出方式
2.3 雷射掃描測距儀之介紹
2.3.1 雷射掃描測距儀動作原理
2.3.2 雷射掃描測距儀之技術資料及應用
2.4 結論
第三章 場效路徑規劃
3.1 簡介
3.2 古典場效函數法和GNRON問題
3.3 修正型場效函數法
3.4 新型場效函數法
3.5 模擬結果
3.6 結論
第四章 混合型路徑規劃
4.1 沿牆前進法
4.1.1 沿牆前進法之步驟
4.1.2 沿牆前進法之沿牆理論
4.1.3 沿牆前進法之模擬
4.2 可見性(visibility)之判斷
4.3 結論
第五章 總結與未來展望
5.1 優缺點
5.2 未來展望
參考文獻
自傳
參 考 文 獻
[1]E. M. Petriu, “Automated guided vehicles with absolute encoded guide- path,” IEEE Transactions on Robotics and Automation, vol. 7, no. 4, pp. 562-565, 1991.

[2]J. Borenstein and Y. Koren, “Histogramic in-motion mapping for mobile robot obstacle avoidance,” IEEE Transactions on Robotics and Automation, vol. 7, no. 4, pp. 535-539, 1991.

[3]A. P. Tirumalai, B. G. Schunck, and R. C. Jain, “Evidential reasoning for building environment maps,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, no. 1, pp. 10-20, 1995.

[4]D. Pagac, E. M. Nebot, and D. W. Hugh, “An evidential approach to map-building for autonomous vehicles,” IEEE Transactions on Robotics and Automation, vol. 14, no. 4, pp. 623-629, 1998.

[5]Y. K. Hwang and N. Ahuja, “A potential field approach to path planning,” IEEE Transactions on Robotics and Automation, vol. 8, no. 1, pp. 23-32, Feb. 1992.

[6]J. C. Latmobe, Robot Motion Planning, Kluwer Academic Publishers, 1991.

[7]Y. H. Liu and S. Arimoto, “Path planning using a tangent graph for mobile robots among polygonal and curved obstacles,” Int. J. Robotics Research, vol. 11, no. 4, pp. 376-382, Aug. 1992.

[8]T. L. Lee and C. J. Wu “Fuzzy motion planning of mobile robots in unknown environments,” Journal of Intelligent and Robotic Systems, vol. 37, pp. 177-191, 2003.

[9]W. L. Xu and S. K. Tso, “Sensor-based fuzzy reactive navigation of a mobile robot through local target switching,” IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol. 29, no. 3, pp. 451-459, 1999.

[10]K. C. Ng and M. M. Trivedi, “A neuro-fuzzy controller for mobile robot navigation and multirobot convoying,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 28, no. 6, pp. 829-840, Dec. 1998.

[11]D. Silva, I. N. Gomide, and D. Amaral, “Navigation of mobile robots using fuzzy logic controllers,” IEEE International Workshop on Advanced Motion Control, pp. 346-349, July 1998.

[12]B. Y. Chee, Y. T. Lang, and W. T. Tse, “Fuzzy mobile robot navigation and sensor integration,” IEEE International Conference on Fuzzy Systems, vol. 1, pp. 7-12, 1996.

[13]J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile robots,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, pp. 1179-1187, Oct. 1989.

[14]Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations for mobile robot navigation,” Proc. IEEE Int. Conf. Robotics and Automation, vol. 2, pp. 1398-1404. Sacramento, Apr. 7-12, 1991.

[15]J. H. Chuang and N. Ahuja, “An analytically tractable potential field model of free space and its application in obstacle avoidance,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 28, pp. 729-736, Oct. 1998.

[16]E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial potential functions,” IEEE Transactions on Robotics and Automation, vol. 8, pp. 501-518, Oct. 1992.

[17]S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,” IEEE Transactions on Robotics and Automation, vol. 16, no. 5, pp. 615-620, Oct. 2000.

[18]E. Rimon, “Exact Robot Navigation Using Artificial Potential Functions,” Ph.D. dissertation, Yale Univ., New Haven, CT, 1990.

[19]O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” Proc. IEEE Int. Conf. Robotics and Automation, vol. 5, no. 1, pp. 90-98, 1986.

[20]B. Hussien, “Robot Path Planning and Obstacle Avoidance by Means of Potential Function Method,” Ph.D. dissertation, Univ. Missouri-Columbia, 1989.

[21]C. W. Warren, “Global path planning using artificial potential fields,” Proc. IEEE Int. Conf. Robotics and Automation, pp. 316-321, 1989.

[22]J. F. Canny and M. C. Lin, “An opportunistic global path planner,” Proc. IEEE Int. Conf. Robotics and Automation, pp. 1554-1559, 1990.

[23]K. H. Wu, C. H. Chen, J. M. Ko, and J. D. Lee, “Path planning and prototype design of an AGV,” Math. Comput. Model., vol. 30, no. 7-8, pp. 147-167, Oct. 1999.

[24]N. I. Katevas and S. G. Tzafestas, “The active kinematic histogram method for path planning of nonpoint, nonholonomically constrainted mobile robots,” Adv. Robot., vol. 12, no. 4, pp. 373-395, 1998.

[25]K. S. Alsultan and M. D. S. Aliyu, “A new potential field-based algorithm for path planning,” Journal of Intelligent and Robotic Systems, vol. 17, no. 3, pp. 265-282, Nov. 1996.

[26]J. Guldner and V. I. Utkin, “Sliding mode control for gradient tracking and robot navigation using artificial potential fields,” IEEE Transactions on Robotics and Automation, vol. 11, pp. 247-254, Apr. 1995.

[27]P. Veelaert and W. Bogaerts, “Ultrasonic potential field sensor for obstacle avoidance,” IEEE Transactions on Robotics and Automation, vol. 15, pp. 774-779, Aug. 1999.

[28]P. Turennout, G.Honderd, and L. J. Schelven, “Wall-following control of a mobile robot,” Proc. IEEE Int. Conf. Robotics and Automation, vol. 1, pp. 280-285, May. 1992.

[29]X. Yun and K. C. Tan, “A wall-following method for escaping local minima in potential field based motion planning,” Proc. IEEE Int. Conf. Advanced Robotics, pp. 421-426, July. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top