跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 16:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張正男
研究生(外文):Cheng-Nan Chang
論文名稱:雲林屋外式與頭份屋內式變電所接地安全分析之比較
論文名稱(外文):Comparison of Ground Grid Safety Analysis at Yunlin Outdoor-Type and Toufene Indoor-Type Substations
指導教授:李建興李建興引用關係
指導教授(外文):Chien-hsing Lee
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:71
中文關鍵詞:雲林屋外式變電所頭份屋內式變電所故障電流分佈因素網目電壓步間電壓
外文關鍵詞:Toufene indoor-type substationfault current division factormesh voltagestep voltageYunlin outdoor-type substation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當變電所發生故障,需立即搶修以排除故障;或在做定期保養維護設備時,皆需將施工區域予以停電,以便進行保養維護工作。為預防因其他人員的疏失而發生誤送電或系統故障時,確保實際網目電壓與步間電壓在安全範圍值內,不致產生電擊而傷害工作人員。一般變電所接地安全評估的方式可分為(1)實際網目電壓與步間電壓是否小於容許接觸電壓與步間電壓;(2)由網目電壓與步間電壓所衍生之容許電擊時間是否大於變電所故障持續時間;(3) 接地電阻與接地電位升目標值是否大於接地電阻與接地電位升設計值。因為流入大地之故障電流(稱為地極電流)可能從微小量變化至100%,對於接地電極(Ground Grid)於經濟與安全設計考量之下,地極電流應該做準確的評估且須有完整的系統資料。另外,為有效評估變電所架空地線之故障電流分佈因素設計架構,故針對接地系統模擬結果進行分析,再評估其變電所接地系統的安全。
本論文之主要目的在探討台灣電力公司電壓等級161/69kV屋外式雲林一次變電所與屋內式頭份一次變電所,以人體50公斤與70公斤來計算標準接觸電壓與步間電壓、實際網目電壓與步間電壓、容許電擊時間以及接地電阻與接地電位升的安全評估。另外,以地極電流法與IEEE Std. 80, 2000版Endrenyi方法計算變電所架空地線之故障電流分佈因素,針對該變電所再評估接地系統安全並與台電變電所接地系統設計準則設計值相比較。換言之,本論文將分析探討雲林屋外式與頭份屋內式161/69kV變電所接地系統安全,其模擬結果可提供為變電所接地系統規劃設計之重要參考依據,作為日後的參考及分析極有助益。
When a substation needs to reintegrate with energized power systems after faults or under regular maintenance practices, the work area is needed to de-energize. To prevent workers from electric shocks due to accidentally energization or faults, the actual mesh and step voltages should ensure to be within the safety criteria. Generally, safety assessment of grounding systems for substations can be classified into (1) whether the actual mesh and step voltages are less than the maximum permissible values, (2) whether the tolerable shock duration which deduced from the mesh and step voltages is greater than the fault duration in a substation, and (3) whether the criteria of ground resistance and ground potential rise are greater than the designed values. Since the fault current can be varied from small percentage to 100%, ground grid currents should be assessed correctly and be listed clearly for economical and safe reasons. Furthermore, to effectively assess the fault current division factor at a substation, one should first analyze and simulate grounding systems at a substation and then assess its grounding safety.
The main purpose of this thesis is to assess the safety of grounding systems for TPC’s 161/69kV indoor and outdoor substations based on calculating the criteria of touch and step voltages, actual mesh and step voltages, the tolerable shock duration, the ground resistance and ground potential rise for a 50kg and 70kg person. Moreover, with the grid current method and Endrenyi’s method to compute the current division factor of ground wires at both substations, the grounding safety of both substations can be assessed again by comparing with the TPC standard values. In other words, this thesis will analyze 161/69kV Yunlin outdoor-type and Toufene indoor-type substations. Hopefully, the simulation results can offer the important reference for grounding system planning and design in the future.
摘要……………………………………………………………………………………....i
ABSTRACT……………………………………………………………….....................ii
誌謝..................................................................................................................................iii
目錄……………………………………………………………………………………..iv
表目錄………………………………………………………………………………….vii
圖目錄…………………………………………………………………………………viii
符號說明………………………………………………………………………………...x
第一章 緒論…………………………………………………………………………...1
1.0 前言……………………………………………………………………………1
1.1 研究動機及背景………………………………………………………………1
1.2 文獻回顧………………………………………………………………………2
1.3 論文架構………………………………………………………………………3
第二章 接地安全模型………………………………………………...........................4
2.0 前言……………………………………………………………………………4
2.1 電流通過人體的效應…………………………………………………………4
2.2 電流對人體的作用……………………………………………………………5
2.2.1 電流大小對人體的作用……………………………………………….5
2.3 安全電壓………………………………………………………………………6
2.3.1 接觸與步間電壓的標準…………………………………………….....6
2.3.2 設計時之網目與步間電壓………………………………………….....9
2.4 電擊時間.…………………………………………………………………….11
2.5 變電所接地電阻之計算……………………………………………………..12
2.5.1 接地電阻設計值……………………………………………………...12
2.5.2 接地電阻目標值……………………………………………………...13
2.6結語…………………………………………………………………………...14
第三章 台灣電力公司輸變電描述與變電所接地系統介紹……………………….15
3.0 前言…………………………………………………………………………..15
3.1 台電輸變電系統描述.……………………………………………………….15
3.1.1 變電所數量及變壓器容量…………………………………………...16
3.1.2 輸電線路長度………………………………………………………...17
3.2 超高壓變電所之接地………………………………………………………..17
3.3 一次變電所之接地…………………………………………………………..18
3.3.1 屋外式一次變電所…………………………………………………...18
3.3.2 屋內式一次變電所…………………………………………………...22
3.4 一次配電變電所之接地……………………………………………………..23
3.5 二次變電所之接地…………………………………………………………..23
3.6 結語…………………………………………………………………………..24
第四章 雲林屋外式與頭份屋內式變電所接地系統理論計算與模擬…………...25
4.0 前言…………………………………………………………………………..25
4.1 屋外式與屋內式變電所之簡述……………………………………………..25
4.2 設計參數……………………………………………………………………..29
4.3 模擬結果……………………………………………………………………..33
4.3.1 容許接觸電壓與步間電壓…………………………………………...33
4.3.2 實際網目電壓與步間電壓…………………………………………...34
4.3.3 容許電擊時間………………………………………………………...38
4.3.4 接地電阻……………………………………………………………...39
4.4 結語…………………………………………………………………………..43
第五章 雲林屋外式與頭份屋內式變電所之電流分佈因素計算與接地系統安
全分析…………………………………………………………………….44
5.0 前言…………………………………………………………………………..44
5.1 地極電流法…………………………………………………………………..44
5.1.1 架空地線模型………………………………………………………...44
5.1.2 傳輸線模型…………………………………………………………...45
5.1.3 地極電流模型………………………………………………………...47
5.2 架空地線總類………………………………………………………………..47
5.3 變電所故障電流分佈因素計算……………………………………………..48
5.4 模擬結果……………………………………………………………………..50
5.4.1 設計時之網目與步間電壓…………………………...........................50
5.4.2 架空地線故障電流分佈因素………………………………………...52
5.4.3 故障電流分佈誤差量………………………………………………...54
5.4.4 容許電擊時間………………………………………………………...57
5.5 結語…………………………………………………………………………..58
第六章 結論與未來研究方向……………………………………………………….60
6.0 結論…………………………………………………………………………..60
6.1 未來研究方向………………………………………………………………..61
參考文獻……………………………………………………………………………….62
附錄 1. 雲林屋外式變電所故障電流分佈因素(Endrenyi 法)…….........................64
附錄 2. 雲林屋外式變電所故障電流分佈因素(地極電流法)...................................66
附錄 3. 頭份屋內式變電所故障電流分佈因素(Endrenyi 法)…….........................68
附錄 4. 頭份屋內式變電所故障電流分佈因素(地極電流法)……………………...70
[1]F. Dawalibi, W. G. Finney, “Transmission Line Tower Grounding Performance In Non-Uniform Soil”, IEEE Transactions on Power Apparatus and System, Vol. PAS- 99, No.2, pp. 471-479, Mar/April 1980.
[2]M. A. E1-Kady, M. Y. Vainberg, “Risk Assessment of Grounding Hazard due to Step and Touch Potentials Near Transmission Line Structures”, IEEE Transactions on Power Apparatus and System, Vol. PAS- 102, No.10, pp. 3080-3087, Sep. 1983.
[3]IEEE Working Group, “Background and Methodology for Analyzing Step and Touch Potential Near Transmission Structures”, IEEE Transactions on Power Apparatus and System, Vol. PWRD- 1, No.2, pp.150-162, April 1986.
[4]E. A. Cherney, K. G. Ringler, N. Kolicio, A. K. Bell, “Step and Touch Potentials at Faulted Transmission Tower”, IEEE Transactions on Power Apparatus and System, Vol. PAS- 100, No.7, pp. 3321-3330, July 1981.
[5]F. Dawalibi, “Ground Fault Current Distribution Between Soil and Neutral Conductors”, IEEE Transactions on Power Apparatus and System, Vol. PAS- 99, No.2, pp. 452-461, Mar/April 1980.
[6]B. R. Gupta, V. K. Singh, “Inductance of Rectangular Grids” ,IEEE Transactions on Power Delivery, Vol. 7, No.3, pp. 1218-1222, July 1992.
[7]Y. Rajotte, R. Bergeron, A. Chalifour, Y. Gervais, “Touch Voltage on Underground Distribution System During Fault Conductions”, IEEE Transactions on Power Delivery, Vol.5, No.2, pp. 1026-1033, April 1990.
[8]IEEE Committee Report, “Safe Substation Grounding-PartⅡ”, IEEE Transactions on Power Apparatus and System, Vol. PAS- 101, pp.4006-4023, Oct. 1982.
[9]B. Thapar, V. Gerez, A. Balakrishnan, D. A. Blank, “Simplified Equations for Mesh and Step Voltage in an AC Substation”, IEEE Transactions on Power Delivery, Vol.6, No.2, pp. 601-607, April 1991.
[10]F. Dawalibi, D. Mukhedkar, “Optimum Design of Substation Grounding in a Two Layer Earth Structure, PartⅠⅡⅢ”, IEEE Transactions on Power Apparatus and System, Vol. PAS-94, No.2, pp. 252-271, Mar/April 1975.
[11]滕松林、楊校生編著,觸電漏電保護器及其應用,大陸機械工業出版社,1994。
[12]楊有啟編著,用電安全技術,大陸化學工業出版社,1996。
[13]IEEE Std. 80-2000, IEEE Guide for Safety in AC Substation Grounding (ANSI).
[14]姚林禹、閆國珍、王應宗等主編,漏電保護器安裝運行技術問答,中國水利水電出版社,1996。
[15]周至如著,接地網系統之計算機輔助設計與分析,台灣工業技術學院碩士學位論文,1986。
[16]C. H. Lee and A. P. Sakis Meliopoulos, “Comparison of Touch and Step Voltages between IEEE Std 80 and IEC479-1”, IEE Proceedings of Generation, Transmission and Distribution, Vol.146, No.6, pp.593-601, Nov. 1999.
[17]IEEE Std. 80-1986, IEEE Guide for Safety in AC Substation Grounding (ANSI).
[18]台電,”輸變電工程處變電所接地系統設計準則”, 2001.
[19]NFPA 70-1996 National Electrical Code.
[20]台電, ”台灣電力公司九十一年年報”, ISSN 1021-4585, 2002.
[21]台電,”第六輸變電計畫90年下半~95年度計畫一次系統擴充工程定案報告”, 2001.
[22]台電,”雲林一次變電所單線圖”, TDS1-06-19951/2~2/2,1986、1996.
[23]台電,”頭份一次變電所單線圖”, TDS1-04-38002 1/2~2/2, 2003.
[24]台電,”雲林一次變電所接地系統配置圖”,TDS1-06-1917B 1/2~2/2、TDS1-06-1918 1/2、TDS1-06-1918A 2/2,1998、1997、1974、1996.
[25]台電,”頭份一次變電所接地系統配置圖” ,TDS1-04-380061 1/2~2/2,1999.
[26]台電,”台電一次系統單、三相故障電流及接地方式檢討”, 附表~2,2002.
[27]台電,”輸變電工程處變電工程作業手冊”, 1979。
[28]B. Thapar and S. K .Madan, “Current for Design of Grounding Systems,” IEEE Transactions on Power Apparatus and System, vol.PAS-103, pp.2633-2637, Sep. 1984.
[29]J. Endrenyi, “Analysis of Transmission Tower Potentials during Ground Faults”, IEEE Transactions on Power Apparatus and Systems, vol. PAS-86,No.10, pp 1274-1283, Oct. 1967.
[30]Hans. R. Seedher and J. K. Arora, “A Practical Approach for Computation of Grid Current”, IEEE Transactions on Power Delivery, Vol.14, No.3, pp.897-902, July 1999.
[31]台電,”訂定變電所接地電阻目標值研究報告”, 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top