跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳恆昌
研究生(外文):Heng-Chang Wu
論文名稱:以狀態為基礎之雙質量系統滑動模式速度控制
論文名稱(外文):A State-Based Sliding Mode Speed Control for a Two-Mass System
指導教授:蔡聖鴻
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:76
中文關鍵詞:適應性滑模觀測器無感測器控制狀態基礎滑模控制雙質量系統行為控制
外文關鍵詞:Action ControlTwo-Mass SystemState-Based Sliding Mode ControlSenserless ControlAdaptive Sliding Mode Observer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用以狀態為基礎之滑動模式控制,來控制雙質量系統之轉動行為。設計時首先決定雙質量系統希望的行為,再設計適當的滑動平面方程式,當滑動平面滿足到達條件,便可達到希望的雙質量系統行為控制。以狀態為基礎之滑動模式控制,其優點為可對個別狀態來作行為的控制,因此我們可以自由的設計系統的保護、響應速度等,使控制能加以掌握並有良好的特性。此外通常受控系統中某些狀態變數是不可量測的,因此本論文在控制器設計時加入狀態觀測器,以解決狀態不可量測之問題,達成無感測器控制目的。
此系統使用自製之雙質量系統,由直流馬達傳動,馬達驅動器分為轉矩型及電壓型兩種。於系統實現上,先利用Matlab軟體模擬,再透過RTW進行程式碼轉譯下載至dSPACE公司生產之DS1102控制卡完成硬體實現,以實作的結果驗證控制法之可行性。
In this thesis, speed control for a two-mass system with state-based sliding mode controllers are discussed. When designing the controllers, the desired action of two-mass system is decided, firstly. Then the suitable sliding surface is designed for the action. When the reaching condition is satisfied, the desire action can be achieved. The advantage of a state-based sliding mode control is that we can control the action of each state.
In general, some state variables are not measurable in practical systems. Therefore, sliding mode state observer also introduced to estimate the states of the systems.
Inorder to test the sliding mode controller, an experimental apparatus is established. An DC motor is used to drive the system. Two types of DC motor drivers torque and voltage (torque and voltage) are used. Realization, We simulate it by Simulink of Matlab. The simulation software becomes a program code through RTW to download to a DSP board. The proposed method is validate by using the experiment results.
目 錄

中文摘要-----------------------------------------------------------------------i
英文摘要--------------------------------------------------------------------- ii
誌謝-------------------------------------------------------------------------iii
目錄-------------------------------------------------------------------------iv
圖目錄-----------------------------------------------------------------------vi
符號總覽---------------------------------------------------------------------ix
第一章 緒論-----------------------------------------------------------------1
1.1 研究動機與目的------------------------------------------------------------1
1.2 文獻回顧-------------------------------------------------------------------1
1.3 內容大綱-------------------------------------------------------------------2
第二章 系統模型與實驗架構------------------------------------------------------4
2.1 硬體架構-------------------------------------------------------------------4
2.2 雙質量系統架構-------------------------------------------------------------5
2.3 雙質量系統的數學模型推導---------------------------------------------------7
2.4 馬達驅動器----------------------------------------------------------------10
2.5 其它模組介紹--------------------------------------------------------------11
第三章 理論回顧---------------------------------------------------------------13
3.1 滑動模式控制--------------------------------------------------------------13
3.2 滑動模式控制切跳現象之改良------------------------------------------------17
3.3 以狀態為基礎之滑動模式控制------------------------------------------------21
第四章 具最大轉速差限制之雙質量系統滑動模式速度控制---------------------------26
4.1 前言----------------------------------------------------------------------26
4.2 控制架構介紹--------------------------------------------------------------26
4.3 具最大轉速差限制之雙質量系統滑動平面設計----------------------------------27
4.4 控制器設計----------------------------------------------------------------28
4.5 實驗結果------------------------------------------------------------------29
第五章 雙質量系統強健性極點配置速度控制設計-----------------------------------37
5.1 前言----------------------------------------------------------------------37
5.2 具積分追蹤強健之直接極點配置滑動模式速度控制------------------------------37
5.3 控制器設計----------------------------------------------------------------38
5.4 實驗結果------------------------------------------------------------------40
第六章 適應性滑模觀測器設計---------------------------------------------------50
6.1 前言----------------------------------------------------------------------50
6.2 適應性滑動模式觀測器------------------------------------------------------50
6.3 實驗結果------------------------------------------------------------------52
第七章 結論及未來展望---------------------------------------------------------59
參考文獻----------------------------------------------------------------------60
參考文獻

[1]沈維明,2003,撓性偏心轉子在重力場下的定速控制,國立雲林科技大學,碩士論文。
[2]L. Mokrani and R. Abdessemed, 2003, “A fuzzy self-tuning PI controller for
speedcontrol of induction motor drive”, IEEE Conference, Con. Appl., Vol.
1, pp.785-790.
[3]M.N. Uddin, T.S. Radwan and M.A. Rahman, 2002, “Performances of fuzzy-logic-
based indirect vector control for induction motor drive”, IEEE Transactions
Ind. Appl., Vol. 38, pp. 1219-1225.
[4]D. Szabo, S. Kerekes, O. Dranga and T. Gajdar, 1999, “A fuzzy sliding mode
approach for the two-mass system”, IEEE Conference, Ind. Electr. Appl.,
Vol. 1, pp. 348-352.
[5]H. Chen, D. Zhang, Z.Y. Cong and Z.F. Zhang, 2002, “Fuzzy logic control for
switched reluctance motor drive”, IEEE Conference, Machine Learning and
Cybernetics, Vol. 1, pp. 145-149.
[6]J.B. Lee, T.B. Im, H.K. Sung and Y.O. Kim, 1999, “A low cost speed control
system of brushless DC motor using fuzzy logic”, IEEE Conference, Decision
and Control, pp. 433-437.
[7]J.H. Song, K.B. Lee, I. Choy, K.B. Kim, J.Y. Choi and K.W. Lee, 1998,
“Vibration control of 2-mass system using a neural network torsional torque
estimator”, IEEE Conference, Ind. Electr., Vol. 3, pp. 1785-1788.
[8]A. Rubaai, R. Kotaru and M.D. Kankam, 2000, “A continually online-trained
neural network controller for brushless DC motor drives”, IEEE Transactions
Ind. Appl., Vol. 36, pp. 475-483.
[9]H. Razik and A. Rezzoug, 2000, “Neural networks applied to the control of an
induction motor”, IEEE Conference, Power Electronics Congress, pp. 60-64.
[10]S.H. Song, J.K. Ji, S.K. Sul and M.H Park, 1993, “Torsional vibration
suppression control in 2-mass system by state feedback speed controller”,
IEEE Conference,Control Appli., Vol.1, pp. 129 –134.
[11]C.H. Lee and M.J. Chung, 2001, “Gain-scheduled state feedback control
design technique for flight vehicles”, IEEE Transactions Aerospace and
Electronic Systems, Vol. 37, pp. 173-182.
[12]C.W. Tao, M.L. Chan and W.Y. Wang, 2003, “Sliding control for linear
uncertain systems”, IEEE Conference, Robotics and Automation, Vol. 2, pp.
2611-2615.
[13]J.Y. Hung, R.M. Nelms and P.B. Stevenson, 1994, “An output feedback
sliding mode speed regulator for DC drives”, IEEE Conference, Ind. Appl.,
Vol. 30, pp. 961-698.
[14]Jean-Jacques E. Slotine and Wei-Ping Li, 1991, Applied Nonlinear Control,
Prentice Hall
[15]C. Edwards and S.K. Spurgeon, 1998, Sliding Mode Control: Theory and
Applications, TAYLOR&FRANCIS.
[16]P. Koroundi, H. Hashimoto and V. Utkin, 1998, “Direct torsion control of
flexible shaft in an observer-based discrete-time sliding mode”, IEEE
Transactions Ind. Electr., Vol. 45, pp. 291 –296.
[17]C. Edwards and R. Cortes; S.K. Spurgeon, 1997, “Sliding mode control using
only output information”, IEE Colloquium, pp.1-4.
[18]Franklin, Powell and Emami-Naeini, 2002, Feedback Control of Dynamic
Systems, Prentice Hall.
[19]郭信賢,2003,含適應估側器之同步磁阻馬達無感側向量控制,國立雲林科技大學,碩
士論文。
[20]K. Sugiura and Y. Hori, 1997, “Vibration suppression in 2- and 3-mass
system based on the feedback of imperfect derivative of the estimated
torsional torque”, IEEE Journal, Ind. Electr. Appl., Vol. 43, pp. 56-64.
[21]N.S. Pai and T.H. S.Li, 2002, “Speed control design of a 2-mass drive
system by using integrated fuzzy observer and linear quadratic control”,
IEEE Conference, Fuzzy System., Vol. 1, pp. 58-63.
[22]Y.H. Kim, F.L. Ewis and C.T. Bdallah, 1996, “Nonlinear observer design
using dynamic recurrent neural networks”, IEEE Conference, Decision and
Control, Vol. 1, pp. 949-954.
[23]J.H. Yang, W.H. Yu and L.C. Fu, 1995, “Nonlinear observer-based adaptive
tracking control for induction motors with unknown load”, IEEE
Transactions Ind. Electr. , Vol. 42, pp. 579-586.
[24]M. Tursini, R. Petrella and F. Parasiliti, 2000, “Adaptive sliding-mode
observer for speed-sensorless control of induction motors”, IEEE
Transactions Ind. Appl., Vol. 36, pp. 1380 –1387.
[25]Z. Chen, M. Tomita, S. Doki and S. Okuma, 2001, “An adaptive sliding
observer for sensorless control of synchronous motors”, IEEE Conference,
Con. Appl., pp. 738-743.
[26]J. Hu, D. Zhu, Y. Li and J. Gao, 1994, “Application of sliding observer to
sensorless permanent magnet synchronous motor drive system”, IEEE
Conference, Power Electr., Vol. 1, pp. 532-536.
[27]P.A. Ioannou and J. Sun, 1996, Robust Adaptive Control, Prentice-Hall.
[28]F.L. Lewis and V.L. Syrmos, 1995, Optimal Control, JOHN WILEY & SONS.
[29]T.S. Park, E.C. Shin, W.H. Oh and J.Y. Yoo, 2003, “Robust speed control
for torsional vibration suppression of rolling mill drive system”, IEEE
Conference, Ind. Electr., Vol. 1, pp. 66-71.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top