跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林世杰
研究生(外文):Shih-Chieh Lin
論文名稱:四分之一車體主動式懸吊系統與FPGA-BasedPID控制器設計
論文名稱(外文):FPGA-Based PID Controller Design for Quarter-Car Active Suspension Systems
指導教授:蘇仲鵬蘇仲鵬引用關係
指導教授(外文):Juhng-Perng Su
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:106
中文關鍵詞:四分之一車主動式懸吊系統模糊PID控制器場效可程式邏輯閘陣列
外文關鍵詞:FPGAQuarter-Car Active Suspension SystemsFuzzy PID Controller
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了改善車輛乘座舒適性和操控性,近年來有許多研究主動式懸吊系統之報告發表,但大都僅止於電腦模擬,缺乏實驗的論證,故本研究將設計一組四分之一主動式懸吊系統並建立於我們實驗室作為實驗機台,應用PID 控制器、模糊控制器得到實際性能。實驗結果將幫助我們發展一個實用的主動式懸吊系統控制法則並探討各控制器間對於車輛的操控安全性及乘坐舒適性之改善情形。
經由這個實驗設備的幫助,本論文的目的為試著設計以FPGA (Field Programmable Gate Array,場效可程式邏輯閘陣列)為基礎的PID控制器來控制主動式懸吊系統,由實驗結果得知車體震動量和加速度可清楚的看出以FPGA為基礎的PID控制器能夠得到很好的乘坐舒適性,另外對操控性也有很好的改善這個可以從輪胎的量測觀察得知。
Recently, many active suspension strategies have been proposed to improve the riding comfort and driving quality of a car. Without practical experimentation, these approaches are mostly based on computer simulation. In this work, an experimental setup representing a quarter-car suspension system is designed and built in our lab to which a PID controller and a fuzzy controller are applied for practical performance evaluation. The experimental results do help develop a practical active suspension control scheme to effectively improve both driving and riding qualities.
With the aid of this experimental setup, the purpose of this thesis is trying to design an FPGA-based PID controller for active suspension system control. The experimental results on the car body vibration and acceleration clearly indicates the proposed FPGA-based PID controller seems to be to achieve good riding comfort. In addition, the driving quality is significantly improved as well; this can be observed from the measurement of the tire deflection magnitude.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX

第一章 緒論 1
1.1 前言 1
1.2懸吊系統的分類及各組成元件與作用原理介紹 3
1.3主動式與半主動式懸吊系統之比較 7
1.4文獻回顧 7
1.5論文架構 9
第二章 主動式懸吊系統架構描述與數學模式介紹 10
2.1四分之一車輛主動式懸吊系統介紹 10
2.1.1系統架構描述 11
2.1.2懸吊機構部份 13
2.1.3電控系統 14
2.2油壓伺服位置控制系統 16
2.3懸吊系統運動方程式 19
2.4懸吊系統的頻率響應分析 20
2.5懸吊系統介面電路使用與設計 25
2.6懸吊系統各種感測器信號處理與量測 26
第三章 控制器介紹 28
3.1簡介 28
3.1.1 控制器設計流程 29
3.2 PID控制器介紹 31
3.3模糊控制理論 33
3.3.1模糊控制器的基本架構 35
3.4模糊PID控制器 37
3.4.1 模糊PID控制器的設計程序 38
第四章 FPGA發展系統介紹與應用 42
4.1數位電路簡介 42
4.2 使用FPGA之優點 43
4.3 FPGA發展系統介紹 44
4.4設計流程與硬體應用 45
4.4.1系統模擬與實驗 47
第五章 模擬與實測結果 52
5.1簡介 52
5.2系統參數設定 53
5.3四分之一車主動式懸吊系統模擬 54
5.3.1 PID控制 56
5.3.2模糊PID控制 62
5.4四分之一主動式懸吊系統實際操作 69
5.4.1 Pc-Base方法 69
5.4.2 FPGA-Based方法 77
第六章 結論與未來研究方向 84
6.1結論 84
6.2未來研究方向 85
參考文獻 86
附錄 90
作者簡介 92
[1]Appleyard, M. and Wellstead, P. E. 1995, “Active suspension: some background,” IEE Proc. Control Theory Appl., vol. 142. No 2, pp. 123-128.
[2]Andrew A. and Hedrick, J. K. 1995,“Nonlinear adaptive control of active suspensions,” IEEE Transactions on control systems technology, vol. 3, No 1, pp. 94-101.
[3]Sunwoo, M. and Cheok, K. C. 1999, “Model reference adaptive control for vehicle active suspension systems,” IEEE Transactions on Industrial Electronics, vol. 38. No 3, pp. 217-222.
[4]Huang, S. J. and Chao, H. C. 2000, “Fuzzy logic controller for vehicle active suspension system,” ImechE Proc. Instn. Mech. Engrs. vol. 214. Part D, pp. 1-12.
[5]Chantranuwathana, S. and Peng, H. 1999, “Force tracking control for active suspensions theory and experiments,” IEEE Proc. Conference on Control Appl. pp. 442-447.
[6]Kim, C. and Ro, P. I. 1997, “A sliding mode controller for vehicle active suspension systems with non-linearities,” Imeche Proc. Instn. Mech. Engrs. vol. 212. Part D, pp. 79-92.
[7]Fialho, I. J. and Balas, G. J. 2000, “Design of nonlinear controllers for active vehicle suspensions using parameter-varying control synthesis,” Vehicle System Dynamics, No. 33, pp. 351-370.
[8]Ting, C. S. and LI, T. H. S. 1995, “Design of fuzzy controller for active suspension system,” Mechatronics, vol. 5, No. 4, pp. 365-383.
[9]Rajamani, R. and Hedrick, J. K. 1995, “Adaptive observers for active suspensions: theory and experiment,” IEEE Transactions on Control Systems Technology, vol. 3. No 1, pp. 86-93.
[10]Rao, M. V. C. and Prahlad, V. 1997, “A tunable fuzzy logic controller for vehicle-active suspension system,” Fuzzy Sets and Systems, Vol.85. pp. 11-22.
[11]Ting, C. S., Li T. H. S., Kung, F. C. 1995, “Design of fuzzy controller for active suspension system,” Mechatronics, vol.5, No.4, pp. 365-383
[12]Alleyne, A. and Hedrick, J. K. 1996, “Nonlinear adaptive control of active suspensions,” IEEE Transactions on Control Systems Technology, vol. 3, No. 1, pp. 94-101.
[13]Lin, J. S. and Kanellakopoulos, I., 1997, “Nonlinear design of active suspensions,” IEEE Control Systems Magazine, vol.17, No.3, pp. 45-59.
[14]Yagiz, N., Ozbulur, V. N., Derdiyok, A. 1997, “Sliding modes control of active suspensions,” Proceedings of the 1997 IEEE International Symposium on Intelligent Control, pp. 349-353
[15]Yoo, B., Jeoung, S., Im, K., So, I., Ham, W. 1996, “Adaptive fuzzy sliding mode control of nonlinear system: The first control scheme,” Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation, Taipei, Taiwan, pp. 590-595.
[16]Holou, A. N., Weaver, J., Lahdhiri, T., Joo, D. S. 1999, “Sliding mode based fuzzy logic controller for a vehicle suspension system,” Proceedings of the 1999 American Control Conference, vol. 6, pp. 4188-4192.
[17]呂紹灝、陳文良、葉莒,“半主動懸架系統之避震器限制與系統模擬”,博士論文,國立清華大學 動力機械工程學系,中華民國八十八年六月。
[18]趙紘慶、黃緒哲,“車輛主動式懸吊之控制系統之研究”,國立臺灣科技大學機械工程技術研究所,碩士學位論文,中華民國八十七年六月。
[19]林威成、黃緒哲,“主動式車輛懸吊之控制器設計”,國立臺灣科技大學機械工程技術研究所,碩士學位論文,中華民國八十九年六月。
[20]Renn, J. C. 1997, “A New approach to synthesize the feedback gains of state-space controller for a servo hydraulic positioning system,” Journal of Control systems and technology, vol. 5, No. 1, pp. 51-59.
[21]Merrit, H.E., 1967, “ Hydraulic control system,” (John Wiely).
[22]Watton, J. 1989, “Fluid power systems,” (Prentice Hall).
[23]Su, J. P., 2002, “Robust control of a class of nonlinear cascade systems: A novel sliding mode approach,” Submitted to IEE Control Theory and Applications, vol. 149, No. 2, pp. 131-136.
[24]Chen, H. M., Su, J. P., Renn, J. C. 2002, “Electro hydraulic position control using soft switching strategy in the boundary layer,” 2002 Proceedings of National Symposium on Automatic Control, NCKU, Taiwan, pp. 88-93.
[25]Williams, R. A. 1997, “Automotive active suspensions part 1: basic principles,” Imeche Proc. Instn. Mech. Engrs. vol. 211. Part D, pp. 415-426.
[26]Williams, R. A. 1997, “Automotive active suspensions part 2: practical considerations,” Imeche Proc. Instn. Mech. Engrs. vol. 211. Part D, 415-426.
[27]Kim, W. and Won, Sangchul 2001, “Modeling and control for asymmetric hydraulic active suspension system,” JSME International Journal, Series C, vol. 44, No. 2, pp. 5-10
[28]XPC target: for use with real-time workshop, ver. 1.0, user’s guide, the math works Inc., 1999.
[29]Simulink: dynamical system simulation for MATLAB, ver. 3.0, user’s guide, the math works Inc., 1999.
[30]Real-time workshop: for use with simulink, ver. 3.0, user’s guide, the math works Inc., 1999.
[31]Real-time windows target: for use with real-time workshop, ver.1.0, user’s guide, the math works Inc., 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top