跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳義坤
研究生(外文):Yi-Kun Chen
論文名稱:可多方式水平橫向運動電熱式微致動器之設計與製造
論文名稱(外文):Design and Fabrication of An Electro-Thermal Microactuator with Multi-Lateral Motion in Plane
指導教授:張嘉隆張嘉隆引用關係
指導教授(外文):Chia-Lung Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:98
中文關鍵詞:微致動器橫向運動電熱式水平多方式
外文關鍵詞:multi-lateral moelectro-thermalmicroactuator
相關次數:
  • 被引用被引用:2
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個嶄新的電熱式微致動器,只要藉由改變兩個接觸墊板之輸入電壓模式,則可產生多方式水平橫向位移運動。此致動器是採取Pan(1997)及Guckel(1992)分別所提出之微致動器的特色整合而成。其操作原理乃基於致動器結構中:(1)不同長度及斷面積的樑臂,(2)選擇性摻雜而具不同電阻係數值之樑臂,以及(3)嚴謹的熱傳邊界條件控制,導致結構不對稱性熱膨脹,進而產生變形位移。
本論文除推導出解析公式進行微致動器之電-熱-力性能分析外,也以商用有限元素軟體ANSYS驗證此致動器設計的可行性及解析結果的正確性。有限元素分析也執行大變形或複雜熱傳狀況的性能分析,並且針對影響致動器性能之重要設計參數,如:結構尺寸、選擇性電阻摻雜及熱傳狀況,進行其特性研究。進而,此致動器可藉由改變樑臂之尺寸及電阻係數,而獲得符合最佳性能之需求。
本論文以與IC製程相容之傳統的矽微加工技術製作微致動器的結構,並以微機電及IC常用的摻雜磷之LPCVD多晶矽薄膜作為結構材料,以證實本研究所提微致動器之效益性。依據模擬分析及實驗結果,本論文所設計的微致動器,能在較低的輸入電壓(例如 0~7V)以及較低的工作溫度(300℃)下,產生達數微米以上的位移。如此,可以整合CMOS電路在同一晶片上,作為致動器之控制。
In this paper, we present a new electro-thermal microactuator to have multi-lateral motion in-plane by only varying voltage potentials at two contact pads. The new microactuator combine the traits of two basic electro-thermal microactators proposed by Guckel (1992) and Pan and Hsu (1997), respectively. The design principle is based on the asymmetrical thermal expansion of the structure with (1) the different lengths and widths of the beams, (2) the varying resistivity of the beams by selective doping, and (3) the rigorous control of thermal boundary conditions.
Analytical models are derived to describe the electro-thermo-mechanical performances of the actuator. The commercial finite element package ANSYS is used to demonstrate the feasibility of the design principle, to verify the analytical results, and to characterize the microactuator in details under large deformation theory or under complex heat transfer conditions. Design parameters (including the structural dimensions, selective doping and heat transfer conditions) significantly influencing the performance of the microactuator are discussed. Thereafter, the optimal structures of the microactuators cab be obtained by varying the dimensions and resistivity of the beams to get proper performance of the microactuator.
Conventional silicon-based micromachining techniques compatible with IC processes are used to fabricate the microactuators. Because Phosphorous-doped LPCVD (low pressure chemical vapor deposition) polycrystalline silicon films have been widely used in a variety of MEMS and IC applications, they are used herein to demonstrate the effectiveness of the proposed microactuators. According to the simulation and experimental results, it is found that only low input voltages (0~7V) are required to achieve displacements in microns with the operating temperatures below 300℃, and hence the simple CMOS electronics can be incorporated on the same chip to control the devices.
目錄

中文摘要………………………………………………………… i
英文摘要………………………………………………………… iii
誌謝...…………………………………………………………… v
目錄……………………………………………………………… vii
表目錄…………………………………………………………… ix
圖目錄…………………………………………………………… x
第一章 前言……………………………………………………… 1
1.1 微機電系統……………………………………………… 1
1.2 微細加工技術…………………………………………… 1
1.3 微致動器………………………………………………… 2
1.4 文獻回顧………………………………………………… 4
1.5研究目的………………………………………………… 6
1.6論文架構………………………………………………… 6
第二章 微致動器之設計………………………………………… 7
2.1概念設計………………………………………………… 7
2.2熱傳理論模型…………………………………………… 10
2.3有限元素模型…………………………………………… 18
2.4特性……………………………………………………… 25
2.4.1 近似最佳結構……………………………………… 25
2.4.2 熱邊界條件的影響………………………………… 34
2.4.3 非理想化效應……………………………………… 46
第三章 微致動器之製作………………………………………… 48
3.1製造技術………………………………………………… 48
3.1.1面型加工技術……………………………………… 48
3.1.2體型加工技術……………………………………… 49
3.1.3混合加工技術(面型-體型結合加工技術)……… 50
3.2微致動器之製作流程…………………………………… 51
3.2.1面型加工製程……………………………………… 51
3.2.2混合加工製程……………………………………… 59
3.3製造特性和性能………………………………………… 64
3.3.1吸附效應與解決方法……………………………… 64
3.3.2考慮殘留應力與控制方法………………………… 65
第四章 量測結果………………………………………………… 66
第五章 結論……………………………………………………… 72
參考文獻…………………………………………………………… 73
附錄………………………………………………………………… 78
基本資料…………………………………………………………… 86


表目錄

表1-1三個主要微製造技術的種類與比較…………………… 2
表2-1模擬中,各種材料有關的機械、熱、電的係數與微致動器的尺寸…………………………………………………… 20
表2-2分析熱邊界條件所採用之最佳結構尺寸………………… 30
表3-1矽非等向性之蝕刻液種類與比較………………………… 50
表3-2晶圓清洗步驟與條件……………………………………… 52
表3-3微影製程之步驟與條件…………………………………… 54
表3-4製程上常用之乾式蝕刻氣體……………………………… 55
表3-5製程上常用之光阻去除方法……………………………… 55


圖目錄

圖2-1 (a)Pad (b)Guckel提出微致動器的微樑結構………… 7
圖2-2 嶄新微致動器示意圖………………………………………… 8
圖2-3 分析中尺寸符號……………………………………………… 8
圖2-4 微致動器四個作動與施加電壓的模式……………………… 9
圖2-5 一維熱傳導示意圖…………………………………………… 11
圖2-6 邊界條件示意圖……………………………………………… 12
圖2-7 Mode(a)的一維熱傳導理論模型簡化示意圖…………… 12
圖2-8 Mode(a)邊界條件示意圖………………………………… 13
圖2-9 Mode(b)的一維熱傳導理論模型簡化示意圖…………… 14
圖2-10 Mode(b)邊界條件示意圖………………………………… 14
圖2-11 Mode(c)的一維熱傳導理論模型簡化示意圖…………… 15
圖2-12 Mode(d)的一維熱傳導理論模型簡化示意圖…………… 16
圖2-13 (a)Mode(c)(b)Mode(d)邊界條件示意圖……………… 17
圖2-14 有限元素分析之3D結構與網格模型…………………… 19
圖2-15 微致動器四個作動與施加電壓的模式…………………… 22
圖2-16 微致動器四個運動模式的溫度分佈曲線………………… 25
圖2-17 在7V的熱樑Ⅱ與橋接樑的各種尺寸位移變化與最高溫度…………………………………………………………… 27
圖2-18 在7V的彎曲樑與橋接樑的各種尺寸位移變化與最高溫度…………………………………………………………… 28
圖2-19 在7V的彎曲樑與冷樑的各種尺寸位移變化與最高溫度… 29
圖2-20 重度摻雜區域之不同電阻係數值在性能上的影響………… 33
圖2-21 傳導在微致動器的位移與溫度的影響…………………… 37
圖2-22 傳導與對流(hf=50 [W × m-2 × oC-1])在微致動器的位移與溫度的影響………………………………………………… 40
圖2-23 傳導, 對流(hf=50 [W × m-2 × oC-1]) 與經由空氣間隙(3μm)傳導至基底在微致動器的位移與溫度的影響……………… 41
圖2-24 在7V之不同熱對流係數在溫度曲線上(路徑1)的影響……………………………………………………………… 43
圖2-25 不同的空氣間隙在溫度上的影響…………………………… 45
圖2-26 非理想化邊界條件示意圖…………………………………… 47
圖3-1 在製造懸空多晶矽犧牲層方法的重要製程步驟……………… 49
圖3-2 濕式蝕刻輪廓特徵示意圖……………………………………… 49
圖3-3 混合加工製程基本流程………………………………………… 51
圖3-4 面型加工製程概要流程圖……………………………………… 58
圖3-5 混合加工製程概要流程圖……………………………………… 62
圖3-6 (a)表面加工(b)混合加工SEM拍攝的微致動器………… 63
圖3-7 吸附效應………………………………………………………… 64
圖3-8 懸浮結構朝向或遠離基底彎曲………………………………… 65
圖4-1 探針台與照相設備示意圖……………………………………… 66
圖4-2 表面加工四種運動模式變形位移的照片……………………… 67
圖4-3 混合加工Mode(b)變形位移的照片………………………… 68
圖4-4 證明微致動器最高溫度位置的照片(Mode(a))……………… 68
圖4-5 不同的電壓之尖端樑位移圖…………………………………… 70
參考文獻
[1] Smits J. G. “Design Consideration of a Piezoelectric-on-Silicon Microrobot “,Sensors and Actuators, A 35, pp.129-135, 1992.

[2] Tatsue Y. and Kitahara T. “Micro-grip System”, J. of Robotics and Mechatronics, 3(1), pp. 57-59, 1991.

[3] Ashley S. “Getting a Microgrip in the Operating Room”, MechanicalEngineering, Sept. pp.91-93, 1996.

[4] Ballandras S., Daniau W., Basrour S., Robert L., Rouillay M., Blind P., Bernede P., Robert D., Rocher S., Hauden D., Megtert S., Labeque A., Zewen L., Dexpert H., Comes R., Rousseaux F., Ravet M. F. and Launois H. “Deep Etch X-ray Lithography Using Silicon-gold Masks Fabricated by Deep Etch UV Lithography and Electroforming “,J. of Micromech. Microeng., 5 ,pp.203-208, 1995.

[5] Akiyama T., Collard D., Fujita H. “Scratch Drive Actuator with Mechanical Links for Self-assembly of Three Dimensional MEMS”, J. Micromechanical Syst., 6 1 ,pp.10-17, 1997.

[6] Chu P. B. and Pister, K. S. “Analysis of Closed-loop Control of Parallel-plate Electrostatic Microgrippers”, IEEE International Conference on Robotics and Automation ,1 ,pp.820-825, 1994.

[7] Riethmuller W. and Benecke W.” Thermally Excited Silicon Microactuators “,IEEE Trans. Electron Devices 35(6) pp.758-763, 1988.

[8] Lin L and Lin S-H “Vertically Driven Microactuators by Electrothermal Buckling Effects”, Sensors and Actuators, A 71, pp 35-39.,1998.

[9] Comtois J. J. and Bright V. M. “Applications for Surface-Micromachined Polysilicon Thermal Actuators and Arrays”, Sensors and Actuators ,A 58 ,pp.19-25, 1997.

[10] Jaecklin V. P., Linder C., Rooij N. F. de, and Moret J. M. “Comb Actuators for XY-Stage”, Sensors and Actuators, A 39, pp.83-89, 1993.

[11] Park J. S. and Chu L. L., Oliver A. D. and Gianchandani Y. B. “Bent-Eeam Electrothermal Actuators Part-II Linear and Rotary Microengines”, J Microelectromechanical Systems ,10(2), pp 255-262, 2001.

[12] Moulton T and Ananthasuresh G. K. “Micromechanical Devices with Embedded Electro-Thermal-Compliant Actuation”, Micro-Electro-Mechanical Systems Symposium at the IMECE., 1999.

[13] Yeh R., Kruglick E. J. J., and Pister K. S. J “Surface-micromachined Components for Articulated Micorobots “,J. Micromechanical System , 5(1) ,pp.10-17, 1996.

[14] Kim C J and Muller R S “ A Bistable Snapping Microactuators”, IEEE Transducers’94, pp 45-50, 1994.

[15] Pan C. S. and Hsu W.”Electro-thermally Driven Microgrippers with Bilateral Motion”, J. of the Chinese Society of Mechanical Engineers ,22(1), pp.71-78, 2001.

[16] Pan, C. S. and Hsu, W. “An Electro-thermally Driven Polysilicon Microactuator”, J. Micromech. Microeng. ,7 ,pp.7-13, 1997.

[17] Guckel H., Klein, J., Christenson T., Skrobis K., Landon M., and Lovell E. G. “Thermo-magnetic Metal Flexure Actuators Technical Digest”, IEEE Solid State Sensor and Actuator Workshop, pp.73-75, 1992.


[18] Field L A, Burresci D L, Rbrish P R and Ruby R C “Micromachined 1x2 Optical Fiber Switch” Proc. 8th Int. Conf. On Solid State Sensors and Actuators ,pp 344-7, 1995.

[19] Lerch P, Slimane C K, Romanowicz B and Renaud P “Modelization and Characterization of Asymmetrical Thermal Microactuators”, J. Micromech. Microeng., 6, pp.134-137, 1996.

[20] Kolesar E S, Ko S Y, Howard J T, Allen P b, Wilken J M, Boydston N C, Ruff M D and Wilks R J “ In-Plane Tip Deflection and Force Achieved with Asymmetrical Polysilicon Electrothermal Microactuators”, Thin Solid Films ,377-378 ,pp 719-726, 2000.

[21] Huang Q. A. and Lee N. K. S. “Analysis and Design of Polysilicon Thermal Flexure Actuator “,J of Micromech. Microeng., pp. 64-70, 1999.

[22] Lee C C and Hsu W “ Optimization of an Electro-Thermally and Laterally Driven Microactuator” Microsystem Technologies, 9 ,pp 331-334, 2003.

[23] Chandrupatla T. R. and Belegundu A. D.” Introduction to Finite Elements in Engineering”,Prentice Hall,pp312-313,2002.

[24] Paul O, Martin V A and Baltes H “Process-Dependent Thermal Physical Properties of CMOS IC Thin Films”, The 8th International Conference on Solid State Sensors and Actuators, Transducers’95 Stockholm Sweden ,p178-181, 1995.

[25] Osterberg P. M. and Senturia S. D. “M-test: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures”, J. of Microelectromechanical Systems, 6 (2), pp. 107-118, 1997.

[26] Mankame N D and Ananthasuresh G K” Comprehensive Thermal Modeling and Characterization of an Electro-Thermal-Compliant Microactuator”, J. Micromech. Microeng. ,11, pp. 1-11, 2001.

[27] Pan C. H.” A Simple Method for Determining Linear Thermal Expansion Coefficients of Thin Films”, J. Micromech. and Microeng., 12, pp.548-555, 2002.


[28] Mills A F “ Basic Heat and Mass Transfer “,(Upper Saddle River, NJ: Prentice Hall), 1999.

[29] Fedder G. K. and Howe R. T. “Thermal Assembly of Polysilicon Microstructures “,Proc. IEEE Micro Electro Mechanical System Workshop, pp.63-68 , 1991.

[30] Tai Y. C., Mastrangelo C. H., Muller R. S. “Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films”, J. Appl. Phys. ,63 (5) ,1, pp.1441-1447, 1988.

[31] Lin L and Pisano A P “ Bubble Forming on a Micro Line Heater Micromechanical “,Sensors, Actuators and Systems, ASME DSC-32 ,pp 147-163, 1991.

[32] Lin L., Chiao M. “Electrothermal Responses of Line Shape Microstructures”, Sensors and Actuators, A55, pp.31-41,1996.

[33] Fang W. and Wickert J. A. “Determining Mean and Gradient Residual Stresses in Thin Films Using Micromachined Cantilevers “, J. of Micromechanics and Microengineering , 6 ,pp.301,1996.

[34] Pan C. S “ Modeling of Micromachined Beams With Boundary Rotation Effect“, 第十五屆中國機械工程學會學術研討會,國立成功大學, 民國87年11月.

[35] Sekimura M. “Anisotropic Etching of Surfactant-Added TMAH Solution “, Proc. 21th IEEE Micro-Electro-Mechanical Systems Conf. MEMS''99 (Orlando, FL, 17-21 January) ,pp 650-5,1999.


[36] Madou M. “Fundamentals of Microfabrication”, CRC Press LLC,pp 261,1997

[37] 陳美杏 “微型半導體式氧氣感測器之設計製作與測試”, 國立成功大學工程科學系碩士論文, 民國92年6月.

[38] 潘吉祥 ”用一嶄新的結構構建熱動式微致動器及微應變感測器”, 國立交通大學機械工程研究所博士論文, 民國87年6月.

[39] 李政璋 “新式表面粗糙化製程及其在微結構抗沾黏之研究”, 國立交通大學機械工程研究所博士論文, 民國92年9月.

[40] Krulevitch P., Howe R. T., Johnson G. C., and Huang J. ”Stress in Undoped LPCVD Polycrystalline Silicon”, IEEE Int. Conference on Solid-State Sensors and Actuators Transducers, pp.949-952,1991.

[41] Guckel H. et al ”Fine Grained Polysilicon Films with Built-In Tensile Strain”, IEEE Trans. Electron Devices, ED-35, pp.800-801,1988.

[42] Guckel H., Sniegowski J. J., Christenson T. R., and Raissi F., “The Application of Fine-grained, Tensile Polysilicon to Mechanically Resonant Transducers”, Sensors and Actuators, A21-A23, pp.346-351,1990.

[43] Orpana M.,and Korhonen A. O., “Control of Residual Stress of Polysilicon Thin Films by Heavy Doping in Surface Micromachining”, IEEE Int. Conference on Solid-State Sensors and Actuators Transducers, pp.957-960,1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top