跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:田炯岳
研究生(外文):Jiung-Yue Tien
論文名稱:製程變數對高鋁與硫化錳複合添加方向性電磁鋼片二次再結晶行為之研究
論文名稱(外文):Effect of Process Variables on the Secondary Recrystallization Behaviors of Aluminum and MnS Added Grain Oriented Electrical Steels
指導教授:侯春看侯春看引用關係
指導教授(外文):Chun-Kan Hou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:178
中文關鍵詞:析出物。磁特性二次再結晶優選方位
外文關鍵詞:secondary recrystallizationtexturemagnetic propertyprecipitates.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本文探討不同的冷軋製程和利用氨氣之氮化處理製程對方向性電磁鋼片一次再結晶及高溫退火後晶粒大小、優選方位及磁特性之影響及在高溫退火之前,抑制物的大小與分佈、一次再結晶退火的微觀組織、二次再結晶行為與磁特性的影響。
熱軋板退火後經一道冷軋(85%)及二道冷軋(50%)製程,對其一次再結晶後的晶粒細化影響不顯著。從脫碳後晶粒的大小及氮含量(30ppm左右)的結果顯示氮氣及氫氣混合退火爐氛沒有氮化的作用產生抑制劑來抑制晶粒成長。而脫碳後,一道冷軋相較於二道冷軋會增加γ-fiber(111)<uvw>優選方位的強度。經高溫退火後,一道冷軋及二道冷軋在1100℃有發生局部二次再結晶現象,高硫試片有較大的晶粒及較強的(110)<001>優選方位。但硫含量對γ-fiber強度的影響並不是很顯著。而(110)<001>優選方位的強度,二道冷軋比一道冷軋來得高;因此,磁特性也是二道冷軋相較於一道冷軋來得的好。
從氮含量分析的結果顯示,添加氨氣在氮氫爐氛中,是會增加氮的含量。隨著滲氮溫度的不同(600℃、650℃、700℃),試片再結晶的比例隨著溫度增加而增加。而且從析出物分佈及量化的結果中(650℃),也可以得到滲氮過程是有一個梯度存在,非均勻分佈。從EDS的結果可以知道,經滲氮製程後其所得到的析出物成分大部分是複合型態的析出物,而只有少數單一型態的析出物存在。從電子繞射圖案當中,析出物的型態為氮氧化矽(Si2ON2)。此外,滲氮時間的不同(30s,1min,2min,4min),試片的氮含量隨時間的增加而增加。然而從析出物分佈及量化的結果也是相同的趨勢。
從高溫退火的結果中,由於只有發生局部二次再結晶的現象,其餘部分都還是屬於正常晶粒成長,因此其所得到的磁特性都不好。從金相上看出氮含量少的,二次再結晶區域較多。若是在升溫的階段,在某一個溫度改變不同的析出物分解或者重新析出的時間對於二次再結晶的結果來說,只有發生局部的二次再結晶現象,其它都還是屬於正常晶粒成長。因此,在某一個溫度改變不同的析出物分解或者重新析出的時間影響並不大;而升溫速率的快慢對於二次再結晶的效應是比較有直接的影響。
This thesis studied the effect of cold rolling process and nitriding condition on the primary annealing microstructure, size and distribution of precipitates, texture, secondary recrystallization behaviors and magnetic properties of aluminum and manganese sulfide added grain oriented electrical steels. It was found that there were little difference in the primary recrystallization grain size between the specimens conducted by 85 % one stage cold reduction and 50 % two stage cold reduction respectively. It was also found that specimens nitriding in hydrogen and nitrogen mixed atmosphere could not formed enough aluminum nitride precipitates to impede the normal grain growth. But specimens conducted by one stage cold roll reduction had more strongerγ-fiber(111)<uvw> texture than specimens conducted by two stage cold roll reduction. On the contrary, specimens conducted by two stage cold roll reduction had more stronger (110)<001> texture than specimens conducted by one stage cold roll reduction. Both specimens occurred partial secondary recrystallization after annealed at 1100℃. After high temperature annealing, the magnetic properties of two stage cold reduction specimen were better than one stage cold roll reduction specimens.
It was found that nitriding in cracked ammonia atmosphere increase the nitrogen content in the specimens. Furthermore, there exits a nitrogen gradient from the surface to the center of the specimens. EDS shows that most of the precipitates are composite type. There are composite of Si2ON2 and MnS. The nitrogen content and the quantities of precipitates in the specimens also increased with increasing nitriding time.
After high temperature annealing, only part of the specimens occurred abnormal grain growth. Therefore, the magnetic properties of the specimens were poor. Before final high temperature annealing, specimens holded at 900℃ to let precipitate come out had little improvement in the development of secondary recrystallization. However, slow heating rate in the final high temperature have positive improvement in the development of secondary recrystallization.
摘要……………………………………………………………………………………………………i
誌謝……………………………………………………………………………………………………iii
目錄……………………………………………………………………………………………………iv
表目錄…………………………………………………………………………………………………vii
圖目錄…………………………………………………………………………………………………viii
第1章 緒論 1
1.1簡介 1
1.2方向性電氣鋼片的發展 2
1.2.1方向性電氣鋼片製造流程 3
1.2.2近來方向性電氣鋼片之發展趨勢 4
1.3影響電氣鋼片電磁特性的因素 5
1.3.1鐵損值(Core loss) 5
1.3.2導磁率(Permeability) 6
1.3.3雜質(Impurity) 6
1.3.4優選方位(Texture) 7
1.3.5結晶粒大小 7
1.4滲氮處理 8
1.4.1簡介 8
1.4.2氮化處理技術 9
1.5方向性電磁鋼片中二次再結晶機制的因素與理論 11
1.5.1合金元素的添加量與種類 12
1.5.2鑄錠的產生方式 14
1.5.3熱軋時Goss優選方位的形成 14
1.5.4熱軋時微觀組織的變化 16
1.5.5熱軋時抑制劑析出的控制 17
1.5.6冷軋與退火製程 17
1.5.7冷軋延量對二次再結晶的影響 18
1.5.8二次再結晶孕核過程………………………………………………………………..19
1.5.9二次再結晶退火製程 20
1.6本論文研究的方向……………………………………………………………………....24
第2章 實驗方法 41
2.1材料 41
2.2熱軋延 41
2.3熱軋板退火 42
2.4熱軋板表面鏽皮的去除 42
2.5一道冷軋與二道冷軋 43
2.5.1一道冷軋(85%) 43
2.5.2第一道冷軋(70%) 43
2.5.3中間退火 44
2.5.4第二道軋延(50%) 44
2.6沒有進行滲氮處理之一次再結晶脫碳退火及高溫退火 44
2.7滲氮處理之一次再結晶脫碳退火及高溫退火 45
2.8氮、碳成分分析 46
2.9金相試片準備及觀察 46
2.10穿透式電子顯微鏡觀察介在物及析出物的大小與分佈 46
2.11影像分析儀統計析出物的大小與分佈的定量分析 47
2.12優選方位試片的準備與量測 47
2.13磁特性量測……………………………………………………………………………...47
第3章 一道冷軋(85%)與二道冷軋(50%)之比較…………………………………………………61
3.1熱軋板退火與中間退火後之晶粒大小………………………………………………….61
3.2熱軋板退火與中間退火後到一次再結晶脫碳退火後之晶粒尺寸的細化效果……….62
3.3AB材料經一道冷軋(85%)、二道冷軋(50%)冷軋狀態下與一次再結晶脫碳退
火後優選方位之變化……………………………………………………………………..62
3.4經由模擬連續退火製程一道冷軋(85%)與二道冷軋(50%)AB材料之晶粒大小………63
3.5經由模擬連續退火製程一道冷軋(85%)與二道冷軋(50%)AB材料之磁特性…………64
3.6經由模擬連續退火製程一道冷軋(85%)與二道冷軋(50%)AB材料之優選方位強度…65
第4章 滲氮處理製程對一次再結晶脫碳退火與高溫退火效應之研究………………………...98
4.1滲氮處理對方向性電磁鋼片一次再結晶脫碳退火後之影響………………………….98
4.1.1經一道冷軋(85%)在一次再結晶脫碳退火800℃(5min)前後進行滲氮處理
750℃(2min)與在一次再結晶脫碳退火800℃(5min)前沒有進行滲氮處理之
AB材料晶粒大小比較………………………………………………………………98
4.1.2經一道冷軋(85%)在一次再結晶脫碳退火800℃(5min)前後進行滲氮處理
750℃(2min)與在一次再結晶脫碳退火800℃(5min)前沒有進行滲氮處理AB
材料氮含量與碳含量分析…………………………………………………………..99
4.1.3在一次再結晶脫碳退火800℃(5min)前後進行滲氮處理750℃(2min)AB材
料之TEM析出物分佈………………………………………………………………99
4.1.4經一道冷軋(85%)在一次再結晶脫碳退火800℃(5min)前後進行滲氮處理
750℃(2min)與在一次再結晶脫碳退火800℃(5min)前沒有進行滲氮處理
AB材料之優選方位比較…………………………………………………………..100
4.2變化不同滲氮處理的溫度對方向性電磁鋼片一次再結晶脫碳退火及高溫退火
後之影響……………………………………………………………………………………100
4.2.1變化不同的溫度(600℃、650℃、700℃)(4min)進行滲氮處理後再進行一次
再結晶脫碳退火800℃(5min)AB材料之晶粒大小……………………………….100
4.2.2變化不同的溫度(600℃、650℃、700℃)(4min)進行滲氮處理後再進行一次
再結晶脫碳退火800℃(5min) AB材料之氮含量與碳含量分析…………………..101
4.2.3變化不同的溫度(600℃、650℃、700℃)(4min)進行滲氮處理後再進行一次
再結晶脫碳退火800℃(5min) AB材料之優選方位強度比較……………………..101
4.2.4在650℃(4min)進行滲氮處理後再進行一次再結晶脫碳退火800℃(5min) AB
材料之TEM析出物分佈、型態、EDS及定量的分析……………………………102
4.2.5在650℃(4min)及700℃(4min)進行滲氮處理後再進行一次再結晶脫碳退火
800℃(5min)後進行高溫退火1200℃(12hr)(升溫速率:0.2℃/min)AB材料之
比較…………………………………………………………………………………..103
4.3變化不同滲氮處理的時間對方向性電磁鋼片一次再結晶脫碳退火及高溫退火後之
影響……………………………………………………………………………………………..104
4.3.1在950℃的溫度下變化不同的滲氮處理時間(30s,1min,2min,4min)後再進行一
次再結晶脫碳退火800℃(5min) AB材料之晶粒大小……………………………..104
4.3.2在950℃的溫度下變化不同的滲氮處理時間(30s,1min,2min,4min)後再進行一
次再結晶脫碳退火800℃(5min)AB材料之氮含量分析…………………………...104
4.3.3在950℃的溫度下變化不同的滲氮處理時間(30s,1min,2min,4min)再進行一次
再結晶脫碳退火800℃(5min)後AB材料之優選方位比較………………………..104
4.3.4在950℃的溫度下變化不同的滲氮處理時間(30s,1min,2min,4min)後,進行一
次再結晶脫碳退火800℃(5min)及持溫950℃(1hr及4hr),以0.8℃/min升溫
至1200℃(12hr)進行高溫退火AB材料之比較………………………………….....105
4.3.5在950℃的溫度下變化不同的滲氮處理時間(30s,2min,4min)後再進行一次再
結晶脫碳退火800℃(5min)AB材料之TEM析出物分佈、EDS及定量的分析….106
4.4變化不同滲氮處理的溫度及時間對方向性電磁鋼片一次再結晶脫碳退火及高溫退火
後之影響………………………………………………………………………………………..107
4.4.1在固定時間下(30s)變化不同的滲氮處理溫度(550℃、600℃、650℃、700℃
、750℃)後再進行一次再結晶脫碳退火800℃(5min)後AB材料晶粒尺寸變
化之比較……………………………………………………………………………..107
4.4.2在固定時間下(30s)變化不同的滲氮處理溫度(550℃、600℃、650℃、700℃
、750℃)後再進行一次再結晶脫碳退火800℃(5min)後AB材料優選方位變
化之比較……………………………………………………………………………..107
4.4.3在固定時間下(30s)變化不同的滲氮處理溫度(550℃、600℃、650℃、700℃
、750℃)後,進行一次再結晶脫碳退火800℃(5min)及以0.2℃/min升溫至
1200℃(12hr)進行高溫退火AB材料之比較………………………………………..108
第5章 結論………………………………………………………………………………………..169
參考文獻……………………………………………………………………………………………..172
﹝1﹞張永輝,吳志昌,1999,〝中鋼對電磁鋼片開發之演進及市場需求之消長〞,磁性技術協會會訊,22期,pp.17-24.
﹝2﹞N.P.Goss,1934,U.S.Patent 1965559.
﹝3﹞K.Honda,S.Kaya,1926,Sci.Reports,Tohoku Univ.,vol.15,pp.721-753.
﹝4﹞張六文,黃議興,2003,〝電磁鋼片的特性與應用〞,Motor Express,31期,pp.1-5
﹝5﹞鄭振東,1999,〝實用磁性材料〞,pp.3-56~3-58.
﹝6﹞R.A.Hadfield,1903,U.S. Patent 745829.
﹝7﹞菅 洋三,平成七年,〝方向性電磁鋼片の低鐵損化の開發動向〞,西山紀念技術講座,日本鋼鐵協會,頁110∼149.
﹝8﹞Yoshiyuki Ushigami,Masata Mizokami,Masahiro Fujikura,Takeshi Kubota,Hiroyasu Fujii,Kenichi Murakami,2003,〝Recent development of low-loss grain-oriented silicon steel〞,Jour.Magn.Mag.Mat.,pp.307-314.
﹝9﹞N.P.Goss,〝New Development In Electrical Strip Steels Characterized By Fine Grain Structure Approaching The Properties Of A Single Crystal〞,Transactions of the A.S.M. ,1935,June,pp.511-544.
﹝10﹞Nobuyuki Takahashi,Yozo Suga,Hisashi Kobayashi,1996,〝Recent development in grain-oriented silicon steel〞,Jour. Magn. Mag. Mat.,pp.98-101.
﹝11﹞T.Sashio, B.Fukada., 1990, "Development of Grain-Oriented Silicon Steel Sheets with Low Iron Loss", Kawasaki Steel Technical Report, no.22, pp.84-91.
﹝12﹞Nobuyuki Takahashi, Yozo Suga, Hisashi Kobayashi: J. Mag. Mag. Mater. 160 (1996), pp.98.
﹝13﹞N. Takahashi and J. Harase,1996,〝Recent Development of Technology of Grain Oriented Silicon Steel〞,Materials Scrence Forum Vols.204-206,pp.143-154.
﹝14﹞ASTM A725-84, Flat-Rolled, Grain-Oriented, Silicon Iron., Electrical Steel, Fully Processed Types. 23H048, 27H053, 30H058 and 35H066.
﹝15﹞ASTM A665-84, Flat-Rolled, Grain-Oriented, Silican Iron, Electrical Steel, Fully Processed Types. 23G048, 27G053, 30G058 and 35G066.
﹝16﹞ASTM A677-84, Nonoriented Electrical Steel, Fully Processed Types.
﹝17﹞ASTM A683-84, Nonoriented Electrical Steel, Semiprocessed Types.
﹝18﹞ASTM A665-84, Flat-Rolled, Grain-Oriented, Silican Iron, Electrical Steel, Fully Processed Types. 23G048, 27G053, 30G058 and 35G066.
﹝19﹞ASTM A726-85. Cold-Rolled Carbon Steel, Magnetic Lamination Quality, Types l,2 and 2S.
﹝20﹞AISI, 1983, Electrical Steel.
﹝21﹞JIS C2552, Non-Oriented Magnetic Steel Sheet and Strip.
﹝22﹞JIS C2553, Grain-Oriented Magnetic Steel Sheet and Strip.
﹝23﹞DIN 41301, Electro Sheets, Magnetic Materials for Tramformers.
﹝24﹞DIN 46400, Steel Flat Product with Special Magnetic Properties, Cold-Rolled, Non-Oriented, Finally Annealed Magnetic Sheet and Strips, Technical Delivery Condition.
﹝25﹞G.Lyudkovsky, P.K. Rastogi and M.Bala, 1986, Jour. of Met., pp.18-26.
﹝26﹞Y. Ushigami, H. Masui, Y. Okazaki, Y. Suga, N. Takahashi: J. Mater. Eng. Perfomance 5 (1996),pp. 310-315.
﹝27﹞B.D.Cullity, 1972, Introduction to Magnetic Materials, Reading, Mass., Addison-Wesley Publishiag Co., pp.493-508.
﹝28﹞F.Brailsford, 1966, Physical principles of Magnetsm, F. Vannostrand, pp.238-240.
﹝29﹞JIS C2552, Non-Oriented Magnetic Steel Sheet and Strip.
﹝30﹞JIS C2553, Grain-Oriented Magnetic Steel Sheet and Strip.
﹝31﹞H.Shimanaka, Y.Ito, T.Irie, K.Natsumura, H.Nakamura and Y.Shono, "Non-Oriented Si-Steels Useful for Energy", in "Energy Efficient Electrical Steels", ed. by A.R.Marder and E.T.Stephenson, AIME, 1980, pp.193-204.
﹝32﹞P.Brissonneau,Jour. Magn. Mag. Mat.,vol.41,1984,pp.38-46.
﹝33﹞L.Neel. 1944,Cah. Phys.,vol.25,pp.21-44.
﹝34﹞L.J.Dijkstra,C.Wert,1950,Phys. Rew.,vol.79,pp.979-985.
﹝35﹞J. Harase,R. Shimizu and D.J. Dingley,1991, 〝Texture Evolution in the Presence of Precipitates in Fe-3%Si Alloy〞,Acta. Metan. mater.,pp.763-770.
﹝36﹞Dong Nyung Lee and Hyo-Tae Jeong,1998,〝The Evolution of The Goss Texture in Silicon Steel〞,Scripta materialia,Vol. 38. No.8,pp.1219-1223.
﹝37﹞T. Baudin,P. Paillard and R. Penelle,1999,〝Simulation of The Anisotropic Growth of Goss Grains In Fe-3%Si Sheets(Grade HI-B)〞,Scripta Materialia,Vol.40,No.10,pp. 1111-1116.
﹝38﹞C.G. Dunn,1953,〝Secondary Recrystallization Textures and Their Origin In Cold-Rolled Single Crystals of Silicon Iron〞,Acta Metallurgica,Vol.1,pp.163-175.
﹝39﹞P.R.Morris and J.W.Flowers, Texture of Crystalline Solid, vol. 4, 1981,pp.129-141.
﹝40﹞J.A.Szpunar, Jour. Textures and Microstructure, vol.11, 1989, pp.93-105.
﹝41﹞T.D.Yensen and N.A.Ziegler, 1936, Trans. ASM, vol.23, pp.556.
﹝42﹞M.F.Littmann, 1967, Jour. Appl. Phys., vol.38, pp.1104-1108.
﹝43﹞E.T.Stephenson and A.R.Marder, IEEE Trans. on Mag., vol.MAG-22, 1986, pp.101-105.
﹝44﹞J.Degauque, B.Astie, J.L.Porteseil and R.Vergne, Jour. Magn. Mag. Mat., vol.26, 1982, pp.261-263.
﹝45﹞B.D.Cullity, 1972, Introduction to Magnetic Materials, Reading, Mass., Addison-Wesley Publishing Co, pp.264.
﹝46﹞J.E. May and D. Turnbull,Trans. Met. Soc.AIME212,769(1958).

﹝47﹞H. Hirano,K. Yoshida and S.Kusuoka,Japanese Patent,Application No.S41-26533(1966).
﹝48﹞Y.Suga,F Matsumoto and T. Nakayama,Japanese Patent,Application No.S57-165066(1982).
﹝49﹞N. Takahashi and J. Harase,Proe. 2nd Int Conf,〝On Grain Growth In Polycrystalline Materials 〞,(Trans. Tech. Publieations to be published).
﹝50﹞T. Konno,Y. Suga,M. Tanita and M. Nakamura,Japanese Patent, Application No.S60-207756(1985).
﹝51﹞T. Konno,Y. Suga,M. Nakamura and H. Komatsu,Japanese Patent, Application No.S59-215827(1984).
﹝52﹞H. Komatsu,M. Tanino,Y. Suga and T. Konno, Japanese Patent, Application No.S60-179855(1985).
﹝53﹞H. Kobayashi, K. Kuroki,M. Minaguchi and K.Yagashiro, Japanese Patent, Application No.S63-100111(1988).
﹝54﹞H. Komatsu and M. Tanino,Tetsu to Hagans,71,S1220(1985).
﹝55﹞N. Takahashi and J. Harase,1996,〝Recent Development of Technology of Grain Oriented Silicon Steel〞,Materials Scrence Forum Vols.204-206,pp.143-154.
﹝56﹞A. Okamoto and H. Yashiki,1996,〝A New Texture Control Process for Grain Oriented Si Steel〞,Materials Science Forum,Vols. 204-206,pp.555-564.
﹝57﹞H.A. Wriedt:Met. Trans.,11A,1731(1980).
﹝58﹞M.Shiozaki:Private communication.
﹝59﹞Y. Ushigami,F. Kurosawa,H. Masui,Y. Suga and N. Takahashi,1996,〝Precipitation Behaviors of Injected Nitride Inhibitors during Secondary Recrystallization Annealing in Grain Oriented Silicon Steel〞,Materials Science Forum Vols. 204-206,pp.593-598.
﹝60﹞黃振賢,1995,〝金屬熱處理〞,pp.187-189.
﹝61﹞T.Gladman, 1986, "Grain Growth and Secondary Recrystallization", Encyclopedia of Materials Science and Engineering, ed. M.M.Bever, pp.2405-2051.
﹝62﹞G.Abbruzzese, I.Ciancaglioni, A.Campopiano, 1988, " On the Mechanism of Secondary Recrystallization in Grain Oriented Silicon Iron", Texture and Microstructure, vol.8&9, pp.401-412.
﹝63﹞R.Shimizu,J.Harase,D. J. Dingley, 1990, " Prediction of Secondary Recrystalliza-ion Texture by Three Dimensional Texture Analysis",Acta metal mater. Vol. 38,No. 6, pp.973-978.
﹝64﹞H.C.Fiedler, 1958, J. Appl. Phys., vol.29, pp.361.
﹝65﹞J.W.Schoen. 1986,"High Temperature Grain Grorth during Slab Reheating of oriented 3 Pct Si-Fe Made Using Continuous Casting", Met. Tran., vol.l7a, pp. 1335-1346.
﹝66﹞T. Nakayama,Doctoral thesis submitted to Kyoto University(1993).
﹝67﹞G. Abbruzzese,S. Fortunati and A. Campopiano,Proc. 1st Intern,Conf. On Grain Growth in polycrystalline materials,405(1992).
﹝68﹞T. Nakayama and Y. Ushigami,ibidem,413(1992).
﹝69﹞H.A. Wriedt and H.Hu,Met.Trans.,7A,711(1976).
﹝70﹞H.A. Wriedt,Met.Trans.,11A,1731(1980).
﹝71﹞N. Takahashi,Tetsu to Hagane,80,N59(1994).
﹝72﹞T.Sashio, B.Fukada., 1990, "Development of Grain-Oriented Silicon Steel Sheets with Low Iron Loss", Kawasaki Steel Technical Report, no.22, pp.84-91.
﹝73﹞Y.Kawamo, T.Wada, S.Hayami, 1990, "Secondary Recrystallization of 3﹪Si-Fe Alloy in the Case of Using α Single Phase 3﹪Si-Fe Slab for the Material", Recrystallization ''90, ed. T.Chandra, The Minerals, Metals & Materials Society, pp.801-806.
﹝74﹞H.A.Wriedt. Hsun.Hu, 1976, "The Solubility Product of Manganese Sulfide in 3Pct Silicon-Iron at 1270 to 1670K", Met. Trans., vol.7a, pp.711-718.
﹝75﹞H.A.Wriedt, 1980,"Solibility product of Aluminum Nitride in 3Percent Silicon Iron", Met. Trans., vol. 11a, pp.1731-1738.
﹝76﹞T.H.Shen, 1986, "The Study of Desulfurization Kinetics in Grain Oriented 3 Person Silicon Iron", Met. Trans., vol.17a, pp.1347-1351.
﹝77﹞T.Gladman, D.Dulieu, 1974, Metal Science, vol.8, pp.167.
﹝78﹞T.Gladman, 1992, "Grain Refinement in Multiple Micro-alloyed Steel", HSLA Steel: Processing, Properties and Applications, ed. by G.Tither and Z.Shouhua, The Minerals, Metals & Materials Society, pp.3-14.
﹝79﹞M.F.Littmann, 1975, Met. Trans., vol.6a, pp.1041.
﹝80﹞K.Kumal, M.Motoyoshi, K.Tanaka, Y.Hakiwara, 1972, U. S. Patent 3671337.
﹝81﹞A.Sakakura, F.Matsumoto, K.Ueno, 1974, U. S. Patent 3841924.
﹝82﹞Y.Inokuti, C.Maeda, Y.Ito, H.Shimanaka, 1983, "Transmission Kossel Study of Origin of Goss Texture in Grain Oriented Silicon Steel", Tran. ISIJ, vol.23, pp.440-449.
﹝83﹞H.Hu, 1974, "Texture of Metals", Texture, vol.1, pp.233-258.
﹝84﹞Y.Inokuti, 1984, "Mechanism of Secondary Recrystallization in Grain Oriented Silicon Steel", ISIJ., vol.15, pp.243-250.
﹝85﹞M.Matsuo, T.Sakai, Y.Suga, 1986, "Origin and Development of Through the Thickness Variations of Texture in the Processing of Grain Oriented Silicon Steel", Met. Trans., vol.l7a, pp.1313-1322.
﹝86﹞Y.Shimizu, Y.Ito, Y.Iida, 1986, "Formation of the Goss Orientation near the Surface of 3 Pct Silicon Steel during Hot Rolling", Met. Trans., vol.17a, pp.1323-1334.
﹝87﹞M.Matsuo, S.Hayami, S.Nagashima, 1971, Trans. Iron Steel Inst. Jpn., suppl. to vol.11, pp.867-871.
﹝88﹞I.Gokyu, M.Matsuo, 1967. J. Jpn. Inst. Met., vol.31, pp.374-380.
﹝89﹞原勢二郎,高嵨邦秀,松村義一,原谷 勤,速水哲博,松本文夫,1981,〝1方向性珪素鋼の熱延中の牶動についての2,3の檢討〞,鐵と鋼,S1200.
﹝90﹞飯田嘉明,清水 洋,伊藤 庸, 嵨中 浩,1981,〝Si-Feγ變態におよほす成份および熱間加工の影響〞,鐵と鋼,S1217.
﹝91﹞M.Manabe, T.Obara, T. Kan, 1993, "Recrystallization Behavior of 3﹪ Si Steel after High Temperature Deformation", Materials Science Forum, vol.113-115, pp.491-496.
﹝92﹞M.Muraki, T.Obara, M.Satoh, T.Kan, 1995,"Control of Recrystallization during High-Temperature Hot-Rolling of Grain Oriented Silicon Steel", JMEPEG, vol.4, pp.413-417.
﹝93﹞W.P.Sun, W.J.Liu, J.J.Jonas,1989,"A Creep Technique for Monitoring MnS Pre-cipatation in Si Steels", Met. Trans., vol.20a, pp.2707-2715.
﹝94﹞W.P.Sun, M.Militzer, J.J.Jonas, 1992, "Strain-Induced Nucleation of MnS in Electrical Steel", Met. Trans., vol.23a, pp.821-830.
﹝95﹞L.Seidel, M.Holscher, K.Lucke, 1989, "Rolling and Recrystallization Texture in Iron 3﹪Silicon", Texture and Microstructures, vol.11, pp.171-185.
﹝96﹞B.F.Decker, D.Harker, 1950, "Relations between Initia 1 and Final Orientations in Rolling and Annealing of Silicon Ferrite", Journal of Applied Physics, vol.22, pp.900-905.
﹝97﹞C.G.Dunn, 1953, "Secondary Recrystallization Textures and their Origin in Cold-Rolled Single Crystals of Silicon Iron", Acta Metall., vol.1, pp.163-175.
﹝98﹞長嵨晉一,1984,集合組織,丸善株式會社,pp.65-125。
﹝99﹞W.R.Hibbard, Jr.W.R.Tully, 1961, "The Effect of Orientation on the Recrystallizat-ion Kinetics of Cold-Rolled Single Crystals", Trans. of the Metall. Society of AIME, vol.221, pp.336-343.
﹝100﹞Munetsugu MATSUO,1989〝Texture Control in the Production of Grain Oriented Silicon Steels〞,ISIJ International,Vol.29,No.10,pp.809-827.
﹝101﹞S. Nakashima,K. TakaShima and J. Harase,Tetsu To Hagane(Japanese),77﹝10﹞,1710.
﹝102﹞S. Arai,Y. Ushigami and N.Takahashi,1996,〝Effect of Cold Rolling Reduction on Secondary Recrystallization of 3%Si-Fe〞,Materials Science Forum,Vols.204-206,pp.617-622.
﹝103﹞Y. Hayakawa and J.A. Szpunar,Acta Mater,45(1996),1285.
﹝104﹞S. Fortunati,S. Cicale,G. Abbruzzese,〝On The Microstructure Condtions Regulating The Incubation Time Of Secondary Recrystallization In Silicon Iron〞,Grain Growth in Polycrystalline Materials Ⅲ, pp.409-416.
﹝105﹞S. Fortunati and G. Abbruzzese,Material Science Forum 204-206(1996)565.
﹝106﹞G. Abbruzzese and A. Campoiano,J. Magn.Mater 133(1994)123.
﹝107﹞G. Abbruzzese,S. Fortunati and A. Campoiano,Mater Sci. Forum 94-96(1992)405.
﹝108﹞S. Fortunati, J. Magn.Mater 133(1994)216.
﹝109﹞S. Fortunati ,G. Abbruzzese and S.Cicale,Thermec 97,Wollongong(1997)163.
﹝110﹞G.Abbruzzese, S.Fortunati, 1989, "Development of Goss Texture during Grain Growth in Fe-3﹪Si", Physica Scripta, vol.39, pp.624-625.
﹝111﹞G.Abbruzzese, A.Campopiano, 1990. "On the Role of Grain Boundary Energy in Secondary Recrystallization of Grain Oriented Silicon Iron", Recrystallization ''90, ed. by T.Chandra, The Minerals, Metals & Materials Society, pp.667-672.
﹝112﹞S.Taguchi, A.Sakakura, U.S. Patent 3287183.
﹝113﹞J. Harase,R. Shimizu and T. Watanabe,Proc. 7th Riso Int. Symp. On Met. Mater.Sci,343(1986).

﹝114﹞M. Hillert,1965,〝On The Theory Of Normal And Abnormal Grain Growth〞,Acta Metallurgica,Vol.13,pp.227-238.
﹝115﹞Y. Ushigami, Y. Suga and N. Takayashi,1996,〝Influence of Secondary Recrystallization Temperature on Secondary Recrystallization Texture in Fe-3%Si Alloy〞,Materials Science Forum,Vols.204-206,pp.623-628.
﹝116﹞Y. Ushigami,T. Nakayama,Y. Suga and N. Takayashi,1996,〝Influence of Secondary Recrystallization Temperature on Secondary Recrystallization Texture in Fe-3%Si Alloy〞,Materials Science Forum,Vols.204-206,pp.599-604.
﹝117﹞J.W. Rutter and K.T. Aust,reffered to by K.T. Aust in Met.Trans. 1,1095(1970).
﹝118﹞Y. Ushigami,T. Nakayama,Y. Suga and N. Takahashi,1996,〝Influence of Secondary Recrystallization Temperature on Secondary Recrystallization Texture in Fe-3%Si Alloy〞,Materials Science Forum Vols.204-206,pp.605-610.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top