跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柚屹
研究生(外文):YU-yi Chen
論文名稱:土壤細料塑性對於土石流流變行為之影響
論文名稱(外文):Influence of Soil Plasticity on theRheological Behavior of a Debris Flow
指導教授:葛德治葛德治引用關係
指導教授(外文):Te-chih Ke
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:營建工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:156
中文關鍵詞:塑性土石流賓漢流體降伏剪應力黏滯係數移動球法迴歸分析
外文關鍵詞:Bingham fluid modelplasticitydebris flowviscosity coefficientmoving ball methodyielding shear stressregression analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
近年來土石流災害在台灣頻頻發生,引起學界與政府單位更加重視土石流災害研究與防治。土石流研究範疇大致可分為土石流發生機制、流動行為、淤積形態及防治方法四大類;而本文主旨為探討影響土石流流動行為之流變特性,採用移動球法來量測其流變參數值並初步建立與土樣塑性參數間之關係,以提供未來現地土石流運動模擬參考之用。
一般土石漿體(懸浮顆粒)之流變特性,可視為賓漢流體來模擬,其流變參數之量測方法眾多,本文是以蔡佐良等人(2002)所提出之移動球法來量測之。本研究將不同土樣配合不同含水量,調製成不同塑性的土壤細料漿體,並以不同速度來進行移動球體試驗,可得其球體剪阻力與球拉速之關係,並藉由線性迴歸計算出土壤細料漿體之流變參數,即黏滯係數及降伏剪應力。本實驗所用之土壤細料有陶土、高嶺土以及皂土,上述含水量決定乃是依照黏土之液塑性加以配比;而標準砂也依不同比例加入,以調配不同塑性之漿體;球體材質有鋼材及大理石,球體直徑範圍為 2cm 至6cm。
移動球法之試驗結果顯示:同樣土壤細料漿體含水量愈高時,其黏滯係數與降伏剪應力值就越低;同樣含水量之下,漿體隨著細料塑性愈大,黏滯係數與降伏剪應力會升高,此外黏滯係數與降伏剪應力也會隨著砂量增多而呈不規則變化。而華山土樣屬於非塑性、難成懸浮液體,實驗結果顯示其流變特性不宜以賓漢模式來模擬。另外,本文使用三種統計試驗(Statistics Tests),發現所用球型(大理石球及鋼球)對於試驗結果並無太大影響,然而所用球徑發現大約有二分之一樣本指出對測試結果造成影響,至於原因則留待後續研究。而賓漢流體二個參數值之預估方面,本研究利用正規化含水量及液性指數來推估,結果發現液性指數會有比較好的結果,其指數迴歸公式可用來初步推估現地土石漿體之流變參數值,以進行現地土石流運動模擬之用。
本文所用移動球法仍需後續之改良與探究,例如上述所用球徑之尺度效應及更廣泛之土樣試驗;另外可參照蔡佐良(2004)近日新研發之移動圓柱法,對本文實驗漿體組再進行驗證試驗,並針對非塑性至低塑性之土石漿體進行分析與研究。
Recently, numerous debris flow disasters in Taiwan have drawn great attention of central government and academic societies to adopt various means for reducing the associated property loss. The scope of debris flow problems may consist of initiation mechanism, flow behavior, deposition, and protection schemes. The thesis is intended to study the rheological characteristics of a debris flow as a fluid medium, which can be measured by a moving-ball method, followed by preliminarily establishing their relationship with soil plasticity for reference use in the motion simulations of local in-situ debris flow sites.
The rheological behavior of soil-water paste as a suspension liquid is often simulated by the Bingham fluid model, which involves two parameters, namely, viscosity coefficient and yielding shear stress. Among many approaches, the moving-ball method modified by Tsai et al. (2002) was used to measure these rheological parameters, which can be back-calculated from the obtained the dragging force versus pulling velocity curve of a solid ball submerged in a well-blended soil paste, with the velocity varying from 50 to 500mm/min. The soil paste specimens used were made of three clay soils (pottery soil, kaolinite, and bentonite), different water contents, and Ottwa sand, each corresponding to different plasticity. Two types of balls were used: steel and marble, and the ball diameter varies from 2 to 6cm.
The test results indicate that: a) for the same soil paste both decrease with increasing water content; b) at the same water content both increase with increasing soil plasticity; c) however, such a trend become weaker for the soil paste with high Ottwa sand content. Three statistics tests show that both steel and marble balls yield the similar results, but the ball diameter gives discrepancy for 50% samples, whose effect requires further examination. Both normalized water content and liquidity index (LI) were adopted to predict the two rheological parameters. The latter proved a better choice, i.e., giving higher values of determination coefficient,These two equations can be used to preliminarily estimate the values,given the water content and Atteberg''s limits of an in-situ debris flow soil.
The test scheme used in this thesis still needs further improvements, such as the investigation on the effect of ball diameter and other boundaries, and the applicability of various in-situ soils, especially the low plastic ones. The moving-cylinder method developed by Tsai (2004) may provide a good alternative to verify the validity of the current work.
目 錄

中文摘要 i
英文摘要 ii
誌謝iii
目錄iv
表目錄vi
圖目錄xv
符號說明xx
一、緒論1
1.1前言1
1.2研究動機與目的1
1.3研究方法與範疇1
1.4論文格式與內容1
二、文獻回顧6
2.1土石流之定義6
2.2土石流之特性6
2.3土石流之分類7
2.4土石流研究之探討範疇8
2.4.1土石流之發生機制9
2.4.2土石流之流動機制10
2.4.3土石流之淤積形態10
2.4.4土石流之防治工法10
2.5土石流行為之分析及防治11
2.5.1土石流發生機制之分析11
2.5.2土石流流動機制之分析11
2.5.3土石流淤積形態之分析12
2.5.4土石流防治工法之研究12
2.6土石流剪力阻抗之研究13
2.6.1固體或半固體土壤的剪力強度13
2.6.2流塑體之流變特性及模式17
2.7流體流變性之量測試驗19
2.7.1主要流變儀器分類19
2.7.2流變參數量測儀器之比較21
三、實驗方法41
3.1基本原理與理論推導41
3.1.1賓漢流體41
3.1.2賓漢流體能否適用於Navies-Stokes Eq.說明41
3.1.3賓漢流體流經球體之理論推導42
3.1.4以移動球法量測賓漢流體參數43
3.2實驗儀器與步驟44
3.3實驗材料之概述46
3.4其它室內試驗項目與方法47
四、實驗結果之分析與討論67
4.1實驗組數與計劃67
4.1.1陶土漿體之流變性試驗結果68
4.1.2高嶺土漿體之流變性試驗結果69
4.1.3高嶺土與皂土混合漿體之流變性試驗結果69
4.1.4高嶺土與標準砂混合漿體之流變性試驗結果70
4.1.5華山土樣漿體之流變性試驗結果70
4.1.6流變參數量測精度之討論71
4.2球型與球徑於流變參數試驗結果影響之討論72
4.2.1球型於流變參數之影響73
4.2.2球徑於流變參數之影響73
4.2.3球型與球徑於流變參數之影響74
五、土壤指數特性與流變參數之關係92
5.1流變參數與含水量之關係92
5.2流變參數與液性指數之關係93
六、結論與建議100
6.1結論100
6.2建議100
參考文獻 101
附錄一105
自傳156
參 考 文 獻


[1]曾泓儒,2001,土石流發生機制之數值模擬,國立臺灣大學土木工程學研究所,碩士論文。
[2]Varnes, D.J. ,1958, “Landslides and engineering practice”, Highway Research Board, Special Report 29, pp. 20-27.
[3]何春蓀,1981,普通地質學,五南圖書公司,台北。
[4]周必凡等,1991,泥石流防治指南,科學出版社,北京,頁96~108。
[5]Johnson, A.M. and Rodine, J.D. ,1984, “Debris Flow”, Slope Instability, John Wiley & Son Ltd., pp. 257-361.
[6]水土保持學會,1992,“水土保持手冊”,中華水土保持學會。
[7]張立憲,1985,“土石流特性之探討”,中華水土保持學報,第16卷,
第1期,頁135~141。
[8]詹錢登,1997,“土石流理論教材大綱”,行政院教育部顧問室,編號
86-土木-教材-C011。
[9]何敏龍,1997,土石流發生機制與流動制止結構物之研究,國立台灣大學土木工程學研究所,博士論文。
[10]Takahashi, T. ,1978, “Mechanical characteristics of debris flow”, J. Hydraulics Div., ASCE, Vol. 104, No. 8, pp. 1153-1169.
[11]Vandine, D.F. ,1985, “Debris flows and debris torrents in the southern Canadian cordillera”, Canadian Geotechnical Journal, Vol. 22, pp. 290.
[12]詹錢登,2000,土石流概論,科技圖書股份有限公司。
[13]謝正倫,1993,“土石流預警系統之研究(Ⅱ)”,國立成功大學台南水工試驗所,研究試驗報告第139號。
[14]山口伊佐夫,1985,“防砂工程學”,國立台灣大學森林學系譯,台北,頁150~174。
[15]游繁結、賴建信,1996,“不同粒徑組成之土石流流動特性研究”,中華水土保持學報,第27卷,第3期,頁213~222。
[16]范正成,1996,“土石流特定水土保持區之判識”,土木技術,第1卷,
第1期,頁200~211。
[17]謝正倫,1991,“土石流災害危險範圍之分析與預測”,行政院國家科學委員會專題報告,NSC 80-0410-E-006-029。
[18]葛德治,2002,“土石流體內顆粒運動機制之研究”,91年度行政院國科會專題研究計畫申請書,頁1~7。
[19]謝正倫,1991,“土石流預警系統之研究”,國立成功大學台南水工試驗所研究試驗報告,130號。
[20]高橋保,1997,“橫跨土石流潛勢區域之橋梁工程問題”,土木工程防災系
列研習會論文集, 國立中央大學土木工程學系橋梁工程研究中心。
[21]吳雲瑞,1999,土石流潛勢分析及其在台南縣之應用,國立成功大學水利及
海洋工程學系,碩士論文。
[22]Fiebiger, Gernot, 1999, “The estimation of the hagard potency of debris flow
and the step to step method” ,中日奧土砂災害防治研討會論文集。
[23]謝正倫,2000,“土石流災害評估方法及實例 ”,地質災害研討會論文集,
台南,頁31~50。
[24]Takahashi, T., 1991, “Debris flow”, IAHR, Monograph, A. A. Balkema,
Rotterdam, The Netherlands.
[25]Takahashi, T., 1980, “Debris flow on prismatic open channel”, J. Hydraulic Div.,
ASCE, Vol. 106, No.HY3: 381-396.
[26]詹錢登,1996,“泥石流流變特性實驗(1)”,國科會專題研究計畫報告。
[27]詹錢登、陳晉琪,1997,“應用直立旋轉式水槽研究土石流體之流動現象”
中華水土保持學報,第28卷第二期,頁157~164。
[28]蔡元芳,1999,土石流扇狀地形狀特性之研究,國立成功大學水利及海洋工
程學系,博士論文。
[29]謝正倫、許睿心,1992,“土石流流動與淤積之數值模擬”,第六屆水利工
程研討會論文集。
[30]謝正倫,1993,“土石流發生與流動之數值模擬”,行政院國科會防災科技
研究報告81~55號。
[31]詹錢登、陳晉琪、黃國文,1996,“運動波模式應用於一維土石流演算之研
究”,中華水土保持學報,第27卷第二期,頁119~126。
[32]Shieh, C. L., Jan, C. D., and, Tsai, Y. F.,1996, “A Numerical Simulation of Debris Flow and Its Application”, Natural Hazards, Vol.13: 39-54.
[33]劉格非及楊茂榮,1997,“半三維土石流之數值模擬”,第一屆土石流研討
會論文集,頁157~170。
[34]詹錢登、李明熹、黃國文,1994,“泥性土石流演算模式之研究”,83年
度農業工程研討會論文抽印本。
[35]Cundall, P. A., and Strack, O. D. L.,1979, “A Discrete Numerical Model for Granular Assemblies”, Geotechnique, 29(1): 47-65.
[36]Cundall, P. A., and Strack, O. D. L.,1983,“Modeling of Microscopie
Mechanisms in Granular Material”, Mechanics of Granular Materials: New
Models and Constiitutive Relation,J. T. Jenkins and M. Satake, eds., Elsevier,
Amsterdam: 137-149.
[37]Ting, J. M., Corkum, B. T., Kauffman, C.R. and Greco, C.,1989, “Discrete
Numerical Model for Soil Mechanics”, J. Geotech. Eng., ASCE, (3): 379-398.
[38]Walton, O. R.,1993, “Numerical Simulation of Inclined Chute Flows of
Mono-dispersed, Inelastic, Frictional Spheres”, Mechanics of Materials, 16,
Elsevier: 239-247.
[39]Ng, T.-T. and Dobry, R.,1994, “Numerical Simulations of Monotonic and Cyclic Loading of Granular Soil”, J. Geotech. Eng., ASCE, vol.120, no.2: 388-403.
[40]Shi, G.-H.,1988,“Discontinuous Dieformation Analysis - a New Numerical Model for the Statics and Dynamics of Block Systems”, Ph.D thesis, Department of Civil Engineering, University of California, Berkeley, 378p.
[41]Ke, T.-C.,and Bray, J.,1995,“Modeling of particulate media using
Discontinuous Deformation Analysis”, J. Engineering Mechanics, ASCE, Vol. 121, No. 11: 1234-1243.
[42]Irving, J. H., and Kirkwood, J. G.,1950,“The statistical mechanical theory of transport properties, IV, The equations of hydrodynamics”, J. Chem. Phys., 18: 817.
[43]Cannon, S. H.,1993,“An empirical model for the volume-change behavior of debris flow”, Proc. Conf. Hydraulic Eng., ASCE, San Francisco: 1768-1773.
[44]Takahashi, T., and Yoshida, H.,1979,“Study on the deposition of debris flow (1): deposition due to abrupt change of bed slope”, Annuals of Disaster Prevention Research Institute, Kyoto University, No.22, B-2: 315-328.
[45]Sassa, K.,1988,“Motion of landslides and debris flow”, Disaster Prevention Research Institute, Kyoto University, Report No. 61480062.
[46]連和政、葉克家,1999,“平行計算於土石流模擬之應用”,第二屆土石流研討會論文集,頁217~225。
[47]施國欽,2000,大地工程學(一),四版,文笙書局。
[48]王獻增,2000,台北盆地黏性土壤不排水剪力強度之研究,國立中央大學土木工程學系,碩士論文。
[49]李崇正,1987,砂受剪變形行為之研究,國立台灣大學土木工程研究所,博
士論文。
[50]杜昀,2004,以移動球法量測土石漿體及新拌混凝土之流變性,國立雲林科技大學工程科技研究所,博士論文。
[51]王建貿,2002,新拌混凝土流變性之量測,國立雲林科技大學營建工程系研究所,碩士論文。
[52]Tattersall,G.H.,1976,The workability of concrete, A viewpoint Publication,PCA.
[53]Larrard , F. De.,et al, 1995 ,“A new Rheometer for Soft-to-Fluid Fresh Concrete”,LCPC internal report.
[54]L''Hermite, R. and Turnon, G. 1948,Vibration of Fresh concrete,No.2, Technical Publication,Paris.
[55]Tsai ,C.-L., Du ,Y. and Wang, C.-M.,2002,“Characterizing The Rheological Properties of Fresh Concrete, Mortar, and Clay Grout”,submitted to Cement and Concrete Research.
[56]王建評,2002,高爐水泥及其摻料對台中紅土之剪力強度特性改良研究,私立朝陽科技大學營建工程系,碩士論文。
[57]沈茂松,1996,實用土壤力學試驗,五版,文笙書局。
[58]Irwin, R.Miller and John E. Freund,Richard Johnson,1990,Probability and Statistics for Engineers,Paula Massenaro,No.4.
[59]林惠玲、陳正倉,2004,應用統計學(二),四版,雙葉書廊。
[60]劉士榮,1995,高分子流變學,滄海書局。
[61]U.S. Department of Transportion Federal Highway Administration,2001, “Portland-Cement Concrete Rheology and Workability: Final Rport” Research,Development,and Technology 6300 georgetown Pike Mclean, VA.April.
[62]Vincent A. Hackley, Chiara F. Ferraris,2001,“The Use of Nomenclature in Dispersion Science and Technology”,NIST Recommended Practice Guide, Special Publication 960-3, August.
[63]L''Hermite, R., 1949, “Vibration and Rheology of Fresh Concrete”Rev. Mater. Construc. (405), Technical Publication NO.14
[64]Bartons, P , 1978, “Workability of flowing concrete. Assessment by a free orifice rheomenter” Concrete 12(10), 28-30.
[65]H. J. Wierig, ed., 1990, “Properties of Fresh Concrete. Proc. of the Coll RILEM”, Chapman and Hall.
[66]Scanlon, J.M., 1994,“Factors influencing concrete workability”, P. Klieger and J.F. Lamond, ed., Testing and Materials, STP 169C, Philadelphia, PA.
[67]James, W. Daily, Donald R.F.Harleman, March 1973, Fluid Dynamic, Fifth printing.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top