跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙永正
研究生(外文):Yung-Cheng Chao
論文名稱:斜裂面、地下水位及細粒料對地質雷達訊號之影響
論文名稱(外文):Influence of Inclined rupture-plane、groundwater level and fines on the georadar signals
指導教授:江健仲
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:營建工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:151
中文關鍵詞:細粒料毛細水層
外文關鍵詞:finescapillary
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
地質雷達為一種非破壞性檢測技術,在國外已廣泛的使用在土木工程上,國內對於地質雷達的技術日趨成熟,研究、應用的範圍相當廣泛,如地下管線的探測、路面的檢測、鋼筋混凝土的檢測、污染及廢棄物的探測等,皆有不錯之成果。
細粒料土壤顆粒容易帶電,改變土壤的導電度,導致電磁波衰減較快,不易施測,本研究以保利龍版模擬斜裂面,將不同比例之細粒料添加至砂土中,使用地質雷達掃描砂土層中的保利龍版,探討保利龍版的影像解析度與相關介電常數之改變。
本研究之試驗皆為室內模型砂箱試驗,以濁水砂為介質,探測不同深度、不同仰角、不同幾何位置之斜裂面,對雷達波反射訊號之影響,挑選保利龍版訊號清晰之位態組合。單一保利龍版在埋深10公分,仰角300時,反射訊號最為清晰,可以清楚發現保利龍版並分辨其傾斜之趨勢,但無法準確判斷傾斜的角度。兩塊保利龍版埋深10公分,仰角300,水平間距大於10公分以上,可以分辨為兩塊保利龍版及其傾斜之趨勢,但仍無法準確判斷傾斜的角度。將訊號最清晰的位態組合之保利龍版埋置於砂箱中,加水,觀察在毛細水層及水位面下保利龍版訊號之影響,當保利龍版沒入毛細水層時,雷達訊號衰減較快,無法偵測到保利龍版的反射訊號。添加砂重量12%之細粒料,觀察細粒料對保利龍版反射訊號之影響,結果保利龍版之反射訊號無明顯之變化。
Georadar detection is well known as a technique of non-destructive testing, and also widely adopted by civil engineers in Europe, America and Japan. In Taiwan, this technique has been developed, greatly helping engineers detect subsurface pipelines, pavement, reinforced concrete, pollution and some kinds of waste.

Fine soils easily catch or lose electrons, which results in the change of the conductivity of the soil. Therefore, a greater decay of the electromagnetic wave takes place. In this research, a polystyrene-foam board was buried in mixed soil of fixed ratio of weight of both substances to simulate the inclined rupture-plane, so as to find out the change in resolution and dielectric constants.

All tests had been done in the laboratory with the same setup. Sand taken from Cho-Shui Creek was used as the medium. Reading was recorded at different depth and distance as the angle of inclined rupture-plane changes in order to study the influence on the reflected radar signals from the soil. The results showed that when a single polystyrene-foam board was buried at the depth of 10 cm with a angle of 30˚, the best signal was read and showed a clear view of the board, depth and direction of dip while the angle cannot be precisely shown. When there were two polystyrene–foam boards buried at the same depth, with same angle and the horizontal spacing was greater than 10 cm, a clear view of two different planes was shown with the directions of dip. However, the angle was not precisely detected yet.

For the case that a single polystyrene-form board was buried at the depth of 10 cm with a angle of 30˚, water was added to study the effects of capillary depth and water surface on the radar signals. As soon as the board under the capillary zone, the signal can hardly be detected so that the polystyrene-form board can not be located. The weight of fines which was 12% of the weight of sand were then added to study the effects of fines on the reflected signals. The additive, however, did not cause any obvious change on the signal as a result.
中文摘要……………………………………………………………………………i
英文摘要……………………………………………………………………………ii
致謝…………………………………………………………………………………iii
目錄…………………………………………………………………………………iv
表目錄………………………………………………………………………………vi
圖目錄………………………………………………………………………………vii



第一章 緒論………………………………………………………………………1
1.1 前言……………………………………………………………………1
1.2 研究動機………………………………………………………………1
1.3 研究目的與內容………………………………………………………1
1.4 本文簡介………………………………………………………………2
第二章 文獻回顧…………………………………………………………………3
2.1 透地雷達發展史………………………………………………………3
2.2 透地雷達相關應用……………………………………………………4
2.2.1 岩體之裂縫偵測…………………………………………………4
2.2.2 土壤或土層構造偵測……………………………………………5
2.2.3 地下水位變化偵測………………………………………………6
第三章 透地雷達相關理論……………………………………………………11
3.1 基本原理……………………………………………………………11
3.2 電磁理論……………………………………………………………11
3.2.1 電磁波基本特性 ……………………………………………11
3.2.2 Maxwell方程式……………………………………………….12
3.3 地層電性參數………………………………………………………14
3.3.1 介電常數………………………………………………………14
3.3.2 導電度…………………………………………………………15
3.3.3 反射係數………………………………………………………15
3.3.4 衰減度…………………………………………………………16
3.3.5 反射能量的帶寬………………………………………………16
3.4 介質電性……………………………………………………………17
3.4.1 傳導電流………………………………………………………17
3.4.2 位移電流………………………………………………………17
3.5 天線頻率對雷達波之影響 …………………………………………18
3.5.1 頻率與電流密度的關係………………………………………18
3.5.2 頻率與速波的關係……………………………………………19
3.5.3 頻率與衰減係數的關係………………………………………19
3.5.4 頻率與雷達波解析能力的關係………………………………20
3.6 雷達理論……………………………………………………………20
3.6.1 雷達方程式……………………………………………………20
3.6.2 雷達波探測深度理論…………………………………………21
3.7 地質雷達探測方式…………………………………………………22
3.7.1 等距施測法……………………………………………………22
3.7.2 同中點施測法…………………………………………………22
3.7.3 幾何比例法……………………………………………………22
3.7.4 廣角反射法……………………………………………………23
3.8 地質雷達現地施測…………………………………………………23
第四章 試驗儀器與試驗內容……………………………………………………36
4.1 儀器介紹……………………………………………………………36
4.2 室內模型砂箱試驗…………………………………………………41
4.2.1 不同埋置深度變化之影響……………………………………43
4.2.2 不同仰角變化之影響…………………………………………47
4.2.3 保利龍版水平間距變化之影響………………………………49
4.2.4 保利龍版垂直間距變化之影響………………………………51
4.2.5 地下水位變化之影響…………………………………………52
4.2.6 添加細粒料之影響……………………………………………56
第五章 結論與建議……………………………………………………………134
5.1 結論…………………………………………………………………134
5.2 建議…………………………………………………………………134
第六章 參考文獻………………………………………………………………136
附錄 (一)………………………………………………………………………141
附錄 (二)………………………………………………………………………143
李桂潀,1996,透地雷達在土木工程應用上之初步研究,國立成功大學,碩士論文。

邱君豪,1997,應用透地雷達探測地下埋設物及地層構造之研究,國立成功大學,碩士論文。

林宏明,2000,透地雷達應用於地下孔洞調查之研究,國立成功大學,碩士論文。

莊政廳,2000,步進式地質雷達探測地下埋設物之模擬與研究,國立雲林科技大學,碩士論文。

鄧景龍,2000,透地雷達於土木構件檢測之應用,國立中央大學,碩士論文。

紀昭銘,2001,應用透地雷達法在土中異物探測之初步研究,國立成功大學,碩士論文。

黃百逸,2001,步進頻率式透地雷達於鋼筋檢測之模擬與研究,國立雲林科技大學,碩士論文。

黃天福,2002,應用透地雷達探測水底淤積泥沙電磁特性之研究,國立中興大學,博士論文。

張森德,2002,透地雷達應用在液化及震陷區之模擬試驗研究,國立雲林科技大學,碩士論文。

楊明璟,2002,應用透地雷達於隧道開挖面前方地質探查之初步研究,國立台灣科技大學,碩士論文。
李瑞峰,2003,應用數值模擬輔助步進式頻率地質雷達檢測判讀,國立雲林科技大學,碩士論文。

陳祥穎,2003,應用後處理程式改善透地雷達訊號特性之探討,國立雲林科技大學,碩士論文。

吳宗富,2004,濁水砂靜態與動態力學行為之初步研究,國立雲林科技大學,碩士論文。

梁昇,1990,穿地雷達回波的原理及其應用於地下水水位之偵測,農林學報,39 卷,2期,201-219 頁。

黃天福、梁昇,1993,應用穿地雷達技術偵測地中埋設管線,中華水土保持學報,24 卷,2期,15-21 頁。

楊潔豪、廖國彰,1994,透地雷達探測與應用,地質,14卷,2期,115-118頁。

楊潔豪,2001,透地雷達在土木檢測上的應用,地工技術,86期,53-62頁。

Annan, A. P. and Chua, L. T., 1992, Ground-penetrating radar performance predictionsGeological Survey of Canada, Paper90-4, pp.5-1.

Benson, Alvin k., 1992, Applications of ground penetrating radar in assessing some geological hazards: examples of groundwater contamination, faults, cavities, Department of Geology, Brigham Young University, Journal of Applied Geophysics 33 ( 1995 ) 177-193

Barringer, A.R., 1965, Research ... (on) Subsurface Terrain (and) Ice Thickness by Pulsed VHF ... Final Rep. Contract No. AF19 (628) 2998, Def. Doc. Cent., Alexandria, VA.
Beres, Milan Jr.and Haeni,F.P., 1991, Application of Ground Penetrating Rader Method in Hydrogeologic Studies, Ground Water, Vol.29, pp.375-386.

Carr, Joseph J., 1994, Practical antenna handbook, 2nd edition, McGraw-Hill, Inc.

Cook, J.C., 1995, Preface, Journal of Applied Geophysics, Vol.33, pp.1-3.

Daniels,D. J., 1996, Surface-penetration radar, The Institution of Electrical Engineers, London.

Daniels, K.J., Gunton, D.J. and Scoot, H.F.(Guest Editors), 1988, Special Issue on Subsurface Radar, IEE Proceedings F-135, pp277-392.

Davis, J. L. and Annan, A. P., 1989, Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy, Geophysics Prospecting, vol.37, pp535-551.

Doolittle, James A. and Collins, Mary E., 1995, Use of soil information to determine application of ground penetrating radar, Journal of Applied Geophysics, Vol 33, pp101-108.

Griffith,D.J., 1989, Introducation to electrodynamics, 2nd Edition.Prentice Hall, Englewood Cliffs, New York.New Jeresy, pp340-393.

Hugenschmidt, J., 2002, Concrete bridge inspection with a mobile GPR system, Construction and Building Materials 16 (2002) 147–154.

Kong, Fan-Nian and Tore lasse, 1995, Performance of GPR which uses step frequency signals, Journal of Applied Geophysics, Vol 33, pp15-26.

Mellett, James S., 1995, Ground penetrating radar applications in engineering, environmental management, and geology., Journal of Applied Geophysics, Vol 33, pp157-166.

Meyer, M.A., 1966, Remote sensing of ice and snow thickness. Proc.4th Symp. Remote Sensing of Environment. Univ. Michigan,Ann Arbor, MI, pp. 183-192.

Parry, N. S. and Davis, J. L., 1992, GPR Systems for Roads and Bridges, Geological Survey of Finland, Special Paper l6, pp.247-257.

Shin,S.F.et.al, 1994, Ground-penetrating radar for salt-affected soil assessment, Journal of Irrigation and Drainafge Enginerring, Vol.120, No2, pp.322-333.

Smith D.G. and Jol H.M., 1997, Radar Structure of Gilbert-Type Delta,Peyto Lake, Banff National Park, Canada, Sedimetary Geology, 113: 195~209.

Sternberg, B.K. and J.W.McGill., 1995, Archaeology studies in southen Arizona using ground penetrating radar, Journal of Applied Geophysics, Vol.33, pp.209-225.

Tetsuma Toshkoia, Tsuneo Tsuchida, Katsuo Sasahara, 1995, Application of GPR to detecting and mapping crack in rock slopes, Journal of Applied Geophysics33 1995 119-124.

Timo Saarenketo and Tom Scullion, 1999, Road evaluation with ground penetrating radar, Journal of Applied Geophysics 43 2000 119–138.

Ulriksen, C.P.F., 1982, Application of impulse radar to civil enginnering: Ph.D.thesis, Dept of Eng.Ged, Lund univ, of tech, Sweden, 1759.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top