跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾楹珍
研究生(外文):Ying-Chen Tseng
論文名稱:以酸溶出法處理印刷電路板廠重金屬污泥之研究
論文名稱(外文):Leaching efficiency of heavy metals from sludge of printed circuit board by acid procedures
指導教授:郭昭吟郭昭吟引用關係
指導教授(外文):Chao-Yin Kuo
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:145
中文關鍵詞:印刷電路板傳統酸溶出處理微波輔助處理溶出污泥重金屬
外文關鍵詞:printed circuit boardacid leaching technologie
相關次數:
  • 被引用被引用:12
  • 點閱點閱:397
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以酸溶出技術(傳統酸溶出處理與微波輔助處理)處理印刷電路板廠重金屬污泥,其重金屬以銅含量為最高,逐步改變溶出劑種類、溶出劑濃度、溶出時間、微波功率、固液比(S/L)等操作條件,探討重金屬污泥經酸處理後的溶出效果。後續於樣品中加入促進劑,觀察其促進效益。另外,處理後的樣品進行標準毒性特性溶出試驗,判斷是否符合溶出標準,以序列萃取程序瞭解污泥中重金屬物種分布之情形。
傳統酸溶出處理結果顯示,固液比1/6時,溶出時間為18 小時,硝酸溶出TA-02和TB-02細粒徑(<150 μm)的銅溶出率分別為74%和64%。重金屬溶出效果非單一受溶出時間的影響,亦受固液比的影響。又微波功率為800 W和400 W,溶出時間為30分鐘時,以1 N硫酸溶出TA-02粗粒徑(<9.5 mm)的銅溶出率分別為93%和77%。溶出率為90%時,傳統處理需花費180分鐘,而微波處理僅需30分鐘,微波程序為可縮短處理時間,並得到良好的溶出效果。在促進結果方面,在固液比為1/6,反應時間5分鐘時,添加促進劑後,TA-02細粒徑(<150 μm)污泥銅溶出率為72%,未添加促進劑污泥銅溶出率為51%,證實了促進劑的功效。
The present study used various leaching technologies to extract heavy metals from sludge of printed circuit board (PCB) process. These methods were included traditional acid extraction (TAE) and microwave assisted treatment (MAT). The target heavy metal in this research was copper.
Experiments expressed acid the leaching efficiency by changing operation conditions, such as acid types and concentrations, leaching time, microwave power and solid liquid ratio (S/L). In addition, experiments added a promoter to enhance the leaching efficiency. The sequential extraction procedure (SEP) was used to determine the sludge fraction of heavy metals
The sludge TA-02 and TB-02 of thin particle size (< 150 μm) using TAE method showed that the copper leaching were 74% and 64% respectively, as S/L for 1/6, leaching time for 18 hrs, nitric acid for leaching solution.
The influence of leaching efficiency using TAE on heavy metals was not only by leaching time but also by solid liquid ratio. Then, the microwave powers were 800 W and 400 W, leaching time was 30 mins, the TA-02 thick particle size (< 9.5 mm) was taken by 1 N sulfuric acid, the copper leaching effect showed 93% and 77% respectively. For 90% of leaching efficiency, the TAE needed 180 mins to accomplish, but MAT procedure needed only 30 mins. The MAT procedure reduced the leaching time and attained better leaching efficiency than TAE. In the aspect of MAT promoters the copper leaching effect was 72% better than as 51% without a promoter within 5 mins of MAT leaching time as TA-02 sludge thin particle size (< 150 μm) for S/L as 1/6.
目錄

第一章 續論 1
1.1 研究緣起 1
1.2 研究目的與內容 2
1.3 研究流程 2
第二章 文獻回顧 4
2.1 印刷路板製程概述及重金屬來源 4
2.1.1 印刷電路板製程之概述 4
2.1.2 印刷電路板污泥重金屬來源 5
2.2 重金屬污泥中水存在之基本形式 6
2.3 國內重金屬污泥申報之概況 7
2.4 重金屬污泥之基本物化特性 9
2.5 重金屬污泥之處理技術回顧 10
2.5.1 重金屬污泥之前處理概述 10
2.5.2 重金屬污泥之處理技術回顧 10
2.6 酸溶出法之理論架構 13
2.6.1 傳統酸溶出處理之介紹 15
2.6.2 微波原理之概述 19
2.6.2.1 微波輔助處理之介紹 24
2.7 序列萃取程序之應用 30
第三章 研究材料與方法 36
3.1 實驗材料與藥品 36
3.2 實驗儀器設備 37
3.3 重金屬污泥之來源與表面特性鑑定 37
3.3.1 重金屬污泥之來源 37
3.3.2 重金屬污泥之表面特性鑑定 38
3.4 重金屬污泥之基本物化性質分析 38
3.4.1 重金屬污泥之三成分分析 38
3.4.2 總量分析 40
3.5 酸溶出實驗 40
3.5.1 傳統酸溶出處理實驗 40
3.5.2 微波輔助處理實驗 43
3.6 無害化實驗 46
3.7 序列萃取程序實驗 47
3.8 樣品分析之品保及品管 50
第四章 結果與討論 59
4.1 重金屬污泥之表面特性鑑定結果 59
4.2 重金屬污泥之基本物化性質分析結果 61
4.3 傳統酸溶出處理實驗結果 65
4.3.1 改變溶出劑濃度與重金屬溶出率之結果 66
4.3.1.1 MTCLP改變溶出劑濃度與重金屬溶出率之結果 66
4.3.1.2 MANC改變溶出劑濃度與重金屬溶出率之結果 69
4.3.1.3改變溶出時間與重金屬溶出率之結果 72
4.3.1.4 三次傳統酸溶出實驗重金屬溶出之結果 76
4.4 微波輔助處理實驗結果 81
4.5 傳統酸溶出處理與微波輔助處理之比較結果 94
4.6 微波促進實驗結果 96
4.7 序列萃取程序實驗結果 100
4.7.1 污泥處理前之序列萃取結果 100
4.7.2 傳統酸溶出處理之序列萃取結果 101
4.7.3 微波輔助處理之序列萃取結果 106
第五章 結論與建議 113
5.1 結論 113
5.2 建議 115
參考文獻 117
Aarne, V. P., (1994) “The role of water in sludge dewatering,” Water Research, 66, 4-11.
Alvarez, E. A., Mochon, M. C., Jimenez Sanchez, J. C., and Rodriguez, M. T., (2002) “Heavy metal extractable forms in sludge from wastewater treatment plants,” Chemosphere, 47, 765-775.
Ariza Gomez, J. L., Giraldez, I, Sanchez-Rodas, D., and Morales, E., (2000) “Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments,” Analytica Chimica Acta, 414, 151-164.
Arslan, C., and Arslan, F., (2002) “Recovery of copper, cobalt, and zinc from copper smelter and converter slags,” Hydrometallurgy, 67, 1-7.
Banza, A. N., Gock, E., and Kongolo, K., (2002) “Base metals recovery from copper smelter slag by oxidizing leaching and solvent extraction,” Hydrometallurgy, 67, 63-69.
Bin, L., Qiuquan, W., Benli, H., and Shuping, L., (2001) “Evaluation of the results from a Quasi-Tessier sequential extraction procedure for heavy metal speciation in solids and sediment by ICP-MS,” Analytical Sciences, 17, i1561-i1564.
Bettinelli, M., Beone, G. M., Spezia, S., and Baffi, C., (2000) “Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis,” Analytica Chimica Acta, 424, 289-296.
Chang, C. J., and Liu, J. C., (1998) “Feasibility of copper leaching from an industrial sludge using ammonia solutions,” J. of Hazardous Materials, 58, 121-132.
Chmielewski, A. G., Urbanski, T. S., and Migdal, W., (1997) “Separation technologies for metals recovery from industrial wastes,” Hydrometallurgy, 45, 333-344.
Cid, P. B., Lavilla, I., and Bendicho, C., (1999) “Application of microwave extraction for partitioning of heavy metals in sewage sludge,” Analytica Chimica Acta,378, 201-210.
Flyhammar, P., (1998) “Use of sequential extraction on anaerobically degraded municipal solid waste,” The Science of the Total Environment, 212, 203-215.
Gan, Q., (2000) “A case study of microwave processing of metal hydroxide sediment sludge from printed circuit board manufacturing wash water,” Waste Management, 20, 695-701sss.
Haque, K. E., (1999) “Microwave energy for mineral treatment processes-a brief review,” International Journal of Mineral Processing, 57, 1-24.
Herck, P. V., and Vandecasteele, C., (2001) “Evaluation of the use of a sequential extraction procedure for the characterization and treatment of metal containing solid waste,” Waste Management, 21, 685-694.
Hong, K. J., Tokunaga, S., and Kajiuchi, T., (2000) “Extraction of heavy metals from MSW incinerator fly ashes by chelating agents,” J. of Hazardous Materials, B75, 57-73.
Hsiau, P. C., and Lo, S. L., (1998) “Extractabilities of heavy metals in chemically-fixed sewage sludges,” J. of Hazardous Materials, 58, 73-82.
Idris, A., Khalid, K., and Omar, W., (2004) “Drying of silica sludge using microwave heating,” Applied Thermal Engineering., 24, 905-918.
Jacob, J., Chia, L. H. L., and Boey, F. Y. C., (1995) “Thermal and non-thermal interaction of microwave radiation with materials,” J. of Material Science, 30, 3521-7.
Jang, Y. C., and Townsend, T. G., (2003) “Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates,” Environmental Science and Technology, 37, 4778-4784.
Jones, D. A., Leyveld, T. P., Mavrofidis, S. D., Kingman, S. W., and Miles, N. J., (2002) “Microwave heating applications in environmental engineering-a review,” Resources, Conservation and Recycling., 34, 75-90.
Katsuura, H., Inoue, T., Hiraoka, M., and Sakai, S., (1996) “Full-scale plant study on fly ash treatment by the acid extraction process,” Waste Management, 16, 491-499.
Kazi, F. K. M., and Cooper, P. A., (2002) “Rapid-extraction oxidation process to recover and reuse copper chromium and arsenic from industrial wood preservative sludge,” Waste Management, 22, 293-301.
Kendall, D. S., (2003) “Toxicity characteristic leaching procedure and iron treatment of brass foundry waste,” Environmental Science and Technology., 37, 367-371.
Kingman, S. W., and Rowson, N. A., (1998) “Microwave treatment of minerals-A review,” Minerals Engineering, 11, 1081-1087.
Li, B., Wang, Q., Huang, B., and Li, S., (2001) “Evaluation of the results from a Quasi-Tessier’s sequential extraction procedure for heavy metal speciation in solids and sediment by ICP-MS,” Analytical Sciences, 17, i1561-i1564.
Lidstrom, P., Tierney, J., Wathey, B., and Westman, J., (2001) “Microwave assisted organic synthesis-a review,” Tetrahedron, 57, 9225-9283.
Liu, J. C., and Kao, T. H., (2003) “Extraction of Cu and Pb from printed circuit board sludge using ammonia solutions,” Water Science & Technology, 47, 167–172.
Lu, Ying., Gong, Z., Zhang, G.., and Burghardt, W., (2003) “Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China,” Geoderma, 15, 101-111.
Menendez, J. A., Inguanzo, M., and Pis, J. J., (2002) “Microwave-induced pyrolysis of sewage sludges,” Water Research, 36, 3261-3264.
Mondal, B. C., and Arabinda, K. D., (2002) “Microwave-assisted synthesis of a new chelating resin containing 2-aminothiophenyl S-acetic acid and its application to the determination of lead,” Reactive & Functional Polymers, 53, 45-52.
Nagourney, S. J., Tummillo, N. J., Birri, J. J., Peist, K., and Kane, J. S., (1997) “Development of reference materials for the analysis of acid-extractable metals in sludge,” Talanta, 44, 189-196.
Naoum, C. J., Fatta, D., Haralambous, K. J., and Maria, L., (2001) “Removal of heavy metal from sewage sludge by acid treatment,” J. Environ. Science Health, A36(5), 873-881.
Perez, C. B., Lavilla, I., and Bendicho, C., (1999) “Application of microwave extraction for partitioning of heavy metal in sewage sludge,” Analytica Chimica Acta, 378, 201-210.
Peterson, R. E., (1993) “Microwave chemical processing,” Proceeding :microwave-induced reactions workshop, Pacific Grove, CA, A9-1~A9-6.
Prudent, P., Domeizel, M., and Massiani, C., (1996) “Chemical sequential extractions as decision-making tool: application to municipal solid waste and its individual constituents ,” The Science of the Total Environment, 178, 55-61.
Sandroni, V., and Smith, C. M. M., (2002) “Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma-atomic emission spectrometry,” Analytica Chimica Acta, 468, 335-344.
Sastre, J., Sahuquillo, A., Vidal, M., and Rauret, G.., (2002) “Determination of Cd, Cu, Pb, and Zn in environmental samples:microwave-assisted total digestion versus aqua regia and nitric acid extraction,” Analytica Chimica Acta, 462, 59-72.
Thostenson, E. T., and Chou, T. W., (1999) “Microwave processing: fundamentals and applications,” Composites: Part A , 30, 1055-1071.
Tessier, A., and Campbell, P. G.. C., (1979) “Comment,” Water Research, 25, 115-117.
Tessier, A., Campbell, P. G. C., and Bisson, M., (1979) “Sequential extraction procedure for the speciation of particulate trace metals,” Analytica Chimica Acta, 51, 844-850.
Ure, A. M., (1996) “Single extraction schemes for soil analysis and related application,” The Science of the Total Environmental, 178, 3-10.
U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, November 2000, Inductively Coupled Plasma-Atomic Emission Spectrometry, Method 6010C.Cincinati, Ohio USA (2004).
U.S. EPA., Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW-846. Method 8000B Determinative Chromatographic Separations (2004).
Walter, I., and Cuevas G.., (1996) “Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application,” The Science of the Total Environmental, 226, 113-119.
Zumdahl, S. S., and Zumdah., S. A., Chemistry Sixth Edition, Boston, New York, 2003.

曾迪華、張木彬、吳宗南、李灝銘(1996),印刷電路板業之污染預防與控制,化工技術第五卷,148-163。
林黃修(1997),資源回收再利用技術-重金屬污泥,工業污染防治報導,財團法人中國技術服務社,12-13。
蕭炳欽(1997),下水污泥餅之化學處理及其重金屬特性之分析,台灣大學環境工程研究所博士論文,14-25, 53-59, 74-82。
林世亮(1999),以觸媒濕式氧化法處理印刷電路板高濃度COD廢液之研究,中山大學環境工程研究所碩士論文,1-8。
陳雍程(2000),土壤樣品鉛、鎘的逐步萃取,中興大學環境工程所碩士論文,14-25, 85-86。
陳錕榮(2000),土壤重金屬污染調查與整治技術評估之研究,雲林科技大學環境與安全工程所碩士論文,88-90, 162。
陳美惠(2001),以微波消化法加速進行水樣中總磷之分析研究,中興大學環境工程所碩士論文,8-12。
王智龍(2002),利用微波處理與光化學還原四氯乙烯之研究,高雄第一科技大學環境與安全衛生工程所碩士論文,13, 16-17。
劉慶宗、陳仕桓、葛明德、黃炳照、顧洋和劉志成(2003),含重金屬污泥之安定化與資源化技術,工業污染防制,86期,180-187。
行政院環境保護屬環境檢驗所(2003),環境檢驗室品質管制指引通則。
感應耦合電漿原子發射光譜法NIEA M104.01C (2004)。
事業廢棄物管制中心網站http://waste.epa.gov.tw
經濟部資源化工業網http://www.iw-recycling.org.tw
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top