跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 03:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游智淵
研究生(外文):Zhi-Yaun You
論文名稱:第三代台灣地區生物源空氣污物排放量推估模式之建立及應用
論文名稱(外文):Development and application of biogenic emission model version 3 for Taiwan
指導教授:張艮輝張艮輝引用關係
指導教授(外文):Ken-Hui Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:181
中文關鍵詞:生物源
外文關鍵詞:biogenic
相關次數:
  • 被引用被引用:5
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,台灣地區臭氧(O3)污染有日益嚴重的趨勢。而生物源揮發性有機物(BVOCs)之排放量被認為可能在光化煙霧之形成中扮演一個重要角色。本研究群1999年以美國環保署所支持發展之「生物源排放量推估模式(Biogenic Emissions Inventory System Version 2, BEIS-2)」為基礎,配合台灣地區之氣象、樹種排放係數及土地使用型態等資料,建立「台灣生物源排放量推估模式(Taiwan Biogenic Emissions Inventory System, TBEIS)」(陳,1999)。後來陸續經過一些擴充包括增加葉溫能量平衡模式及更新本土檳榔、柏樹、草地及旱田排放係數(游, 2001),稱為第二版(TBEIS-2.1, 2002)(游等, 2002)。Geron(2000)提出若未細分monoterpene則會有±30~50 %的誤差。Goldstein(1999)另指出溼度強烈影響monoterpene的排放,且對二次有機氣膠(SOA)生成有很大的影響,因此本研究目的乃將TBEIS-2.1在進一步將推估物種擴充成33種,並考量光及相對溼度對單帖類(monoterpene)之影響,擴充後稱為第三版「台灣生物源排放量推估模式(TBEIS-3.1)」,以期TBEIS-3推估結果能更適合空氣品質模式使用。
對於影響BVOCs排放量之氣象參數進行敏感度分析,分析參數包括環境溫度(Ta)、光合輻射通量 (PAR)、葉子可吸收之輻射通量(Ri)、雲冪(cloud)、風速(WS)及相對溼度(RH),結果顯示,環境溫度(Ta)及葉子可吸收之輻射通量(Ri)對排放量之敏感度較高,其次是風速(WS)及相對溼度(RH)。TBEIS-3發展模式完成後,針對2000年氣象條件進行模擬,其模擬結果如下:
台灣地區2000年生物源模擬之排放總量約為43.3萬公噸,異戊二烯(isoprene)排放量約為14.8萬公噸,佔排放總量的34.3%,甲基丁烯醇(MBO)排放量約為0.7萬公噸,佔排放總量的1.6 %, 14種單帖類(monoterpene)排放量約為14.7萬公噸,約佔排放總量的34 %,17種其他VOCs排放量約為13.7萬公噸,約佔排放總量的31.7 %。
14種monoterpene以α-pinene排放量最大約為5.7萬公噸,佔排放總量的13 %,β-pinene次之約為2.4萬公噸(5.6 %),limonene再次之約為2.0萬公噸(4.6 %),α守帖烯(α-thujene)最小,約只佔排放總量的0.3 %。17種其他VOCs以甲醇(methanol) 排放量最大約為4.2萬公噸(9.8 %),醋酸己烯(hexenyl acetate)次之約為3.2萬公噸(7.4 %),甲醛(formaldehyde)再次之約為1.1萬公噸(2.6 %),乙烯(ethene)最小約為27公噸(0.01 %)。
以TBEIS-3.與TBEIS-2.1推估2000年BVOCs總排放量顯示,TBEIS-3.較TBEIS-2.1增加為12.7萬公噸,約增加為42 %,各物種以monoterpene增量最大,約為84 %,其中以中午時段(11時∼14時)增加最多,其他VOCs次之,約為62 %,isoprene增量最少,約為4 %。
Biogenic VOCs emission is considered maybe play an important role in photochemical production of smog. The study is base on BEIS-2(Biogenic Emissions Inventory System Version 2)and match up the land use database and meterological data of Taiwan to develop TBEIS(Taiwan Biogenic Emissions Inventory System). Expanded includes leaf temperature energy balance model and update emission factor , called Taiwan Biogenic Emission Inventory System Version 2.1 (TBEIS-2.1). Geron (2000) reported that it would have ±30~50 % error for biogenic monoterpene emission estimation if BEIS-2.0 is used to estimate total monoterpene emission. Goldstein (1999) also presented that humidify is an important factor affecting monoterpene emission and secondary organic aerosol. Therefore, this study will develop a new version of biogenic volatile organic compounds emission inventory for Taiwan (TBEIS-3.0) on the basis of TBEIS-2.1 that was developed in 2002. The new version one should be more suitable for air quality modeling.
For the sensitive of meteorology parameter of affecting biogenic VOCs emission , parameter include ambient air temperature、photosythetically active radiation flux、total radiation flux by leaf、fractional area of cloud coverage、windspeed and rhumidy , the result shown , the sensitive of ambient air temperature and total radiation flux by leaf was highest , secondary are windspeed and rhumidy. The result of TBEIS-3.0 simulate biogenic emission for 2000 that the:
The biogenic VOCs emission of Taiwan are about 433 thousand metric tons over a year (2000). Isoprene are 148 thousand metric tons , about 34.3% for tatal biogenic emission , methylbutenol are 7 thousand metric tons(1.6%) , 14 monoterpene are 147 thousand metric tons(34%) , 17 other VOCs are 137 thousand metric tons(31.7%).
α-pinene emission are 57 thousand metric tons , bout 13% for tatal monoterpene , next are β-pinene and limonene , about 24(5.6%) and 20(4.6%) thousand metric tons ,α-thujene are lowest(0.3%). For 17 other VOCs , methanol emission was highest ,about 42 thousand metric tons(9.8%) , next are hexenyl acetate and formaldehyde , about 32(7.4%) and 11(2.6%) thousand metric tons , ethene are lowest(0.01%).
TBEIS-3 compare with TBEIS-2.1 , TBEIS-3 emission increase of 127 thousand metric tons , about 42% , monoterpene was highest , about 84% , noon are increase highest , other VOCs are 62% , isoprene are 4%.
目錄
中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅵ
目錄 Ⅵ
表目錄 X
圖目錄 XII
第一章 前言 1
第二章 文獻回顧 3
2.1生物源排放量推估模式之介紹 3
2.1.1台灣生物源排放量推估模式(TBEIS-1.0)………………….…3
2.1.1.1土地利用 3
2.1.1.2排放係數資料庫 4
2.1.1.3排放量之推估與校正因子之計算 4
2.1.2台灣生物源排放量推估模式(TBEIS-1.1)……………………...6
2.1.2.1 排放係數資料庫之更新………………………….………6
2.1.3台灣生物源排放量推估模式(TBEIS-2.0)……………………...7
2.1.3.1 葉溫能量平衡模式……………………………….………7
2.1.3.2 葉子吸收之長波輻射及短波輻射通量 .8
2.1.4台灣生物源排放量推估模式(TBEIS-2.1)………………………9
2.1.5 其他生物源VOCs排放量推估模式…………………………...9
2.2生物源VOCs排放物種之探討 …10
2.2.1 14種monoterpene之探討……………………………………..10
2.2.2 農作物排放BVOCs之探討…………………………………..10
2.2.3各種其他VOCs之探討………………………………………..11
2.3生物源VOCs排放之其他影響因子 10
2.3.1 光合輻射通量 12
  2.3.2相對溼度 13
  2.3.3 其他影響因子 14
2.4模式驗證 14
2.5 誤差分析…………………………………………………………...15
第三章 研究方法 16
3.1 研究流程 16
3.2 研究方法 16
3.2.1 文獻收集 16
3.2.2 建立台灣地區之34種BVOCs排放係數 18
3.2.3 其他環境影響因子推估機制 18
3.2.4 模式擴充程序 21
3.2.5 模式的輸入 21
3.2.6 模式的輸出 21
3.2.7 程式之測試 23
3.2.8 模式輸入資料 24
3.2.8.1 收集氣象資料…………………………………………..24
3.2.8.2 氣象站資料處理………………………………………...26
3.2.8.3中尺度氣象模式輸出資料處理…………………….…...26
3.2.9 敏感度分析 24
3.2.9.1 推估基準 24
3.2.9.2 調變參數 24
3.2.10 2000年台灣生物源VOC排放量推估與分析 24
3.2.11 模式擴充前後之模擬分析 26
3.2.12 各國排放量推估比較…………………………………….29
第四章 結果與討論 30
   4.1建立台灣地區34種BVOCs排放係數資料庫 30
    4.1.1 排放係數之認定 30
    4.1.2 排放係數 31
   4.2程式之擴充 …33
4.2.1葉子吸收之長波輻射與短波輻射(Ri)分層 33
4.2.2葉面積指標(LAI)為零之樹種不分層 33
4.2.3加入14種單帖類(monoterpene)及19種其他VOC 33
4.2.4光對14種單帖類(monoterpene)影響之擴充 34
4.2.5相對溼度對14種單帖類(monoterpene)e影響之擴充 34
   4.3 模式之測試 35
4.3.1定性 35
4.3.2 定量 37
4.4 敏感度與不確定性分析…………………………………………...40
4.4.1推估基準…………………………………………………….40
4.4.2 環境溫度……………………………………………………41
4.4.3 葉子吸收之長波及短波輻射………………………………42
4.4.4 光合輻射通量……………………………………………...43
4.4.5 雲冪………………………………………………………..44
4.4.6 風速………………………………………………………..45
4.4.7 相對溼度…………………………………………………..46
4.4.8參數敏感度比較……………………………………………47
4.5 2000年台灣生物源VOC排放量推估與分析……..………………48
4.5.1時間分佈分析 ...49
4.5.2空間分佈分析 .52
4.5.3空品區之比較 .55
4.5.4各縣市之比較……………………………………….……….56
4.5.5 TBEIS-3.與TBEIS-2.1之比較……………………………..57
4.5.6 各國排放量推估比較………………………………………58
第五章 結論與建議 60
5.1結論 60
5.2建議 62
參考文獻 63
附錄A 排放係數認定方法表……………………………………………….154
表目錄
表2.1.1 林務局與中鼎資料總和之各土地利用型所佔面積表…………….73
表2.1.2 國外排放係數資料分類…………………………………………….74
表2.1.3 國內土地利用型分類……………………………………………….77
表2.1.4 經認定整理後之排放係數因子表 …………………………………78
表2.1.5 TBEIS-2.1之排放係數因子………………………………………..80
表2.1.6 葉溫能量平衡模式輸入參數…………………………………………82
表2.5.1 BEIS 2之不確定性分析…………………………………………….83
表3.1 TBEIS-2.1及預期完成TBEIS-3之差異……………………………..84
表3.2 中央氣象局26個地面氣象站基本資料……………………………….85
表3.3 中央氣象局88個自動氣象站基本資料……………………………….86
表3.4 環保署空氣品質測站基本資料………………………………………..89
表4.1.1 國外之排放係數表………………………………………………….91
表4.1.2 國外排放係數資料分類………………………………………………93
表4.1.3 國內土地利用型分類…………………………………………………96
表4.1.4 闊葉林之monoterpene排放係數認定方式…………………………..97
表4.1.5 經認定整理後之14種帖烯排放係數因子(�慊 m-2 h-1)表……………99
表4.1.6 經認定整理後之18種其他VOCs排放係數因子(�慊 m-2 h-1)表…102
表4.1.7 TBEIS-3之排放係數因子(�慊 m-2 h-1)……………………………104
表4.2.1 各版本之生物源排放量推估模式之比較…………………………106
表4.3.1 α-pinene之定量說明……………………………………………..107
表4.3.2 methanol之定量說明………………………………………………108
表4.4.1 參數調變範圍………………………………………………………..109
表4.4.2 敏感度測試選取網格之樹種資料………………………………….109
表4.4.3 各參數敏感度與各種BVOCs之關係………………………………110
表4.5.1 台灣地區2000年四種生物源VOCs排放量*(萬公噸)……………111
表 4.5.2台灣地區2000年各月份33種生物源VOCs排放量*(公噸)……..112
表4.5.3 台灣地區2000年各空品區及各縣市之生物源VOCs排放總量(公噸)
…………………………………………………………………………………113
表4.5.4 台灣地區2000年各空品區及各縣市之14種monoterpene排放總量(公噸)…………………………………………………………....114
表4.5.5 台灣地區2000年各空品區及各縣市之17種其他VOCs排放總量(公噸)………………………………………………………………..115
表4.5.6 TBEIS-3.與TBEIS-2.1之2000年總BVOCs排放量比較……...116

圖目錄
圖2.1.1 台灣生物源排放量推估模式(TBEI-1.0)之系統組成與輸出及輸入資料 .117
圖2.1.2 TBEIS-2.0之系統組成與輸出及輸入資料 .117
圖2.3.1 isoprene、α-pinene及β-pinene通量之日變化 .118
圖2.3.2 不同機制對monoterpene之影響 .118
圖2.3.3 降雨後對monoterpene(Δ3–carene)之影響 .119
圖2.3.4 降雨後對monoterpene(α-pinene)之影響 .119
圖2.3.5 降雨後對acetone之影響 120
圖3.1 發展工作流程圖 121
圖3.2 台灣地區185個測站分佈圖 122
圖4.2.1 TBEIS-3發展流程圖 123
圖4.2.6 isoprene之排放量(g/hr)空間分佈圖(第三季基準日12時) 124
圖4.2.7 闊葉林所佔網格面積比例之分佈圖 124
圖4.2.8 針葉林所佔網格面積比例之分佈圖………………………………124
圖4.2.9 limonene之排放量(g/hr)空間分佈圖(第三季基準日12時) .124
圖4.2.10 α-terpinene之排放量(g/hr)空間分佈圖(第三季基準日12時) .125
圖4.2.11 β-phellandrene排放量(g/hr)空間分佈圖(第三季基日12時) .125
圖4.2.12 pcymene之排放量(g/hr)空間分佈圖(第三季基準日12時) .125
圖4.2.13 ocimene之排放量(g/hr)空間分佈圖(第三季基準日12時) .125
圖4.2.14 MBO之排放量(g/hr)空間分佈圖(第三季基準日12時) .126
圖4.2.15 acetone之排放量(g/hr)空間分佈圖(第三季基準日12時) .126
圖4.2.16 α-pinene之排放量(g/hr)空間分佈圖(第三季基準日12時) .126
圖4.2.17 methanol之排放量(g/hr)空間分佈圖(第三季基準日12時) .126
圖4.3.18 第三季基準日模擬isoprene之24小時排放量分佈圖 .127
圖4.3.19 第三季基準日模擬MBO之24小時排放量分佈圖 .127
圖4.3.20 第三季基準日模擬14種monoterpene之24小時排放量分佈圖 .128
圖4.3.21 第三季基準日模擬17種其他之24小時排放量分佈圖 .128
圖4.4.1 不同葉溫對CT及Ms之比較圖 .129
圖4.4.2 環境溫度對四種BVOCs排放量之敏感度 .129
圖4.4.3 環境溫度對14種monoterene排放量之敏感度分析圖 .130
圖4.4.4 環境溫度對18種其他VOCs排放量之敏感度分析圖 .130
圖4.4.5 葉子吸收之長波及短波輻射(Ri)對四種BVOCs排放量之敏感度 .131
圖4.4.6 葉子吸收之長波及短波輻射(Ri)對14種monoterene排放量之敏感度分析圖 .131
圖4.4.7葉子吸收之長波及短波輻射(Ri)對18種其他VOCs排放量之敏感度分析圖 .132
圖4.4.8 光合輻射通量(PAR)對四種BVOCs排放量之敏感度 .132
圖4.4.9 光合輻射通量(PAR)對14種monoterene排放量之敏感度分析圖 .133
圖4.4.10 光合輻射通量(PAR)對18種其他VOCs排放量之敏感度分析圖 .133
圖4.4.11 雲冪(fractional area of cloud coverage)對四種BVOCs排放量之敏感度 .134
圖4.4.12 雲冪(fractional area of cloud coverage)對14種monoterene排放量之敏感度分析圖 .134
圖4.4.13 雲冪(fractional area of cloud coverage)對18種其他VOCs排放量之敏感度分析圖 .135
圖4.4.14 風速(WS)對四種BVOCs排放量之敏感度 .135
圖4.4.15 風速(WS)對14種monoterene排放量之敏感度分析圖 .136
圖4.4.16 風速(WS)對18種其他VOCs排放量之敏感度分析圖 .136
圖4.4.17 相對溼度(RH)對四種BVOCs排放量之敏感度 .137
圖4.4.18 相對溼度(RH)對14種monoterene排放量之敏感度分析圖 .137
圖4.4.19相對溼度(RH)對18種其他VOCs排放量之敏感度分析圖 .138
圖4.5.1 台灣地區2000年推估各月份生物源各種類VOCs排放量圖 .138
圖4.5.2 2000年在0 ~ 23點各個小時isoprene之累積排放總量分佈圖 .139
圖4.5.3 台灣地區2000年生物源排放總量空間分佈圖 .140
圖4.5.4 台灣地區2000年isoprene排放總量空間分佈圖 .140
圖4.5.5 台灣地區2000年MB O排放總量空間分佈圖 .140
圖4.5.6 台灣地區2000年14種monoterpene排放總量空間分佈圖 .140
圖4.5.7 台灣地區2000年α-pinene排放總量空間分佈圖 .141
圖4.5.8 台灣地區2000年β-pinene排放總量空間分佈圖 .141
圖4.5.9 台灣地區2000年limonene排放總量空間分佈圖 .141
圖4.5.10 台灣地區2000年camphene排放總量空間分佈圖 .141
圖4.5.11 台灣地區2000年β-terpinene排放總量空間分佈圖 .142
圖4.5.12 台灣地區2000年17種其他VOCs排放總量空間分佈圖 .142
圖4.5.13 台灣地區2000年methanol排放總量空間分佈圖 .142
圖4.5.14 台灣地區2000年hexenyl acetate排放總量空間分佈圖 .142
圖4.5.15 台灣地區2000年2.hexenal排放總量空間分佈圖 .143
圖4.5.16 台灣地區2000年acetone排放總量空間分佈圖 .143
圖4.5.17 台灣地區2000年formaldehyde排放總量空間分佈圖 .143
圖4.5.18 台灣地區2000年各季生物源VOCs排放總量空間分佈圖 .144
圖4.5.19 台灣地區2000年各季MBO排放總量空間分佈圖 .145
圖4.5.20 台灣地區2000年各季isoprene排放總量空間分佈圖 .146
圖4.5.21 台灣地區2000年各季14種monoterpene排放總量空間分佈圖 .147
圖4.5.22 台灣地區2000年各季17種其他VOCs排放總量空間分佈圖 .148
圖4.5.23 台灣地區2000年各空品區之生物源排放量 .149
圖4.5.24 台灣地區2000年各空品區之排放強度 .149
圖4.5.25 台灣地區2000年各縣市之生物源排放量 .150
圖4.5.26 台灣地區2000年各縣市之排放強度 .150
圖4.5.27 2000年總生物源VOCs各小時之TBEIS-3與TBEIS-2.1比較圖 .151
圖4.5.28 2000年isoprene各小時之TBEIS-3與TBEIS-2.1比較圖 .151
圖4.5.29 2000年monoterpene各小時之TBEIS-3與TBEIS-2.1比較圖 .152
圖4.5.30 2000年各小時之TBEIS-3與TBEIS-2.1其他VOCs比較圖 .152
圖4.5.31 各國isoprene排放通量比較 .153
圖4.5.31 各國生物源VOCs與人為源VOCs排放通量比較 .153
參考文獻
1.中鼎工程,空氣品質改善維護計畫執行成效分析檢討計畫,期中報告,行政院環保署,EPA-88-FA32-03-1091,中華民國八十七年。
2.中鼎工程、中國技術服務社,空氣污染總量管制推行先期作業及空氣物染物排放量推估標準方法建立,期末報告,行政院環保署,中華民國八十八年。
3.王麗婷,自然源揮發性有機物現場觀測與排放量推估之研究,國立雲林科技大學環安所碩士論文,1998。
4.陳杜甫、張艮輝,生物源空氣污染排放量之模式推估,第十六屆空氣污染控制技術研討會,中華民國八十八年。
5.張章堂等人,南高屏地區空氣污染總量管制規畫子計畫A4:南高屏地區農、林、礦業及雜項排放量整合與推估,行政院環保署,EPA-88-FA21-03-0012,1999。
6.游智淵、陳杜甫、張艮輝,台灣地區生物源空氣污染物排放量推估模式(TBEIS2.0)之擴充,第十九屆空氣污染控制技術研討會,中華民國九十一年。
7.游榮華,植物排放異戊二烯對大氣環境之影響,雲林科技大學碩士論文,中華民國九十年。
8.黃增泉,植物分類學,國立編譯館,中華民國八十三年。
9.臺灣省農林廳林務局,第三次台灣森林資源及土地利用調查,1995。
10.Arey J., David e, Crowley, Margaret Crowley, Margaret Resketo and Julia Lester, Hydrocarbon Emissions From Natural Vegetation in California’s South Coast Air Basin, Atmospheric Environment Vol. 29, No. 21, pp. 2977-2988, 1995.
11.Bai, Y., J. Li, B. Liang, M. Zhao, and X. Tang, Natural hydrocarbon compounds emitted form vegetation in China,Pure and Applied Chemistry, 67,1415-1419, 1995.
12.Baker B., Alex Guenther, James Greenberg, Allen Goldstein, and Ray Fall, Canopy fluxes of 2-methyl-3-buten-2-ol over a ponderosa pine forest by relaxed eddy accumulation: Field data and model comparison, Journal of Geophysical Research, Vol. 104, No, D21, Pages 26, 107-114, 1999
13.Baker B., U.S.-China Collaborative Research: Effect Land Use Change China Reactive Biogenic Compounds in the Atomsphere, 2002 , http://www.ias.sdsmt.edu/staff/Baker/Chinaprop.pdf.
14.Benjamin, M.T., Sudol, M., Bloch, L., and Winer, A.M., Low-emitting urban foreste: a taxonomic methodology for assigning isoprene and monoterpene emission rate, Atmos. Environ., Vol. 30, No.9, pp. 1437-1452, 1996.
15.Campbell, G.S., Norman, J.M., 1998. An Introduction to Encironmental Biophysics, 2nd Endition. Springer, New York , P.286.
16.Christensena,*, C.S. P. Hummelshψjb, N.O. Jensenb, B. Larsenc, C. Lohsed, K. Pilegaardb, H. Skova, Determination of the terpene from orange species and Norway spruce by relaxed eddy accumulation, Atmospheric Enveronment 34, 3057-3067, 2000.
17.Ciccioli, P., Brancaleoni, E., Frattoni, M., Brachetti, A., Marta, S., Loreto, F., Seufert, G., Vitullo, M., Tirone, G., Manca, G., Valentini, R., Daily and Seasonal Variations of Monoterpene Emission form an Evergreen Oak(Quercus ilex L.) Forest of Southern Europe , A CHANGING ATMOSPHERE , 2002.
18.Ciccioli P., Brancaleoni E., Frattoni M., Marta S., Brachetti A., Vitullo M., Tirone G., Valentini R., Relaxed eddy accumulation, a new technique for measuring emission and deposition fluxes of volatile organic compounds by capillary gas chromatography and mass spectrometry. Journal of Chromatography A, 2003.
19.C.S. Christensena,*, P. Hummelshψjb, N.O. Jensenb, B. Larsenc, C. Lohsed, K. Pilegaardb, H. Skova, Determination of the terpene from orange species and Norway spruce by relaxed eddy accumulation, Atmospheric Enveronment 34, 3057-3067, 2000.
20.Collins, C. D., J. N.B. Bell, and C. Crews: Benzene accumulation in horticultural crops, Chemosphere 40, 109-114, 1999.
21.deGouw, J. A., C. J. Hoeard, T. G. Custer and R. Fall (1999), Emission of volatile organic compounds form cut grass and clover are enhanced during the drying process, Geophys. Res. Lett., 26,811-814.
22.Derognat, C., M. Beekmann, M. Baeumle, D. Martin, H. Schmidt, Effect of Biogenic VOC Emissions on Tropospheric Chemistry During the ESQUIF Campaign in the Ile-de-France Region,
23.Fall, R., Benson, A., A., Leaf menthanol the simplest natural product from plants, Trends in plant science , 1996.
24.Fall, R., T. Karl, A. Hansel, A. Jordan and W. Lindinger, (1999), Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectroscopy, J. Geophys. Res., 104, 15963-15974.
25.Fukui, Y., and P. V. Doskey: Air-surface exchange of nonmethane organic compounds at a grassland site: Seasonal variations and stressed emissions, J. Geophys. Res. 103, 13,153-13,168, 1998.
26.Gallagher, M. W., R. Clayborough, K.M. Beswick, C.N. Hewitt, S. Owen, J. Moncrieff, K. Pilegaard, Assessment of a relaxed eddy accumulation for measurements of fluxes of biogenic volatile organic compounds : study over arable crops and a mature beech forest, Atmospheric Environment 34, 2887~2899, 2000.
27.Geron, C., Pierce, T., Biogenic Trace Gas Emission in the United States, U.S. EPA, 2002.
28.Geron, C., A. Guenther, and T. Pierce, An improved model for estimating emissions of volatile organic compounds from forests in the eastern United States. J. Geophys. Res., 99, pp.12 773-12791, 1994.
29.Geron, C., Rasmussen R., Arnts R., Guenther, A., A review and synthesis of monoterpene speciation from forests in the United States, Atmospheric Environment 31, 1761-1781, 2000.
30.Geron, C., (U.S. EPA, ORD,National Risk Management Research Laboratory, RTP, NC) , Tom Pierce (U.S. EPA, ORD, National Exposure Research Laboratory, RTP, NC) , Biogenic Trace Gas Emissions in the United States.
31.Goldstein, A. H., M. L. Goulden, J. W. Munger, S. C. Wofsy, and C. D. Geron, Seasonal course of isoprene emissions from a midlatitude deciduous forest, J. Geophys. Res. 103, 31,045-31,056, 1998.
32.Goldstein A., Schade W., Gunnar W., Lamanna M., Are monoterpene emission influenced by humidity , Geophys. Res .Lett., 26,2187-2190, 1999.
33.Goldstein A., Schade W., Quantifying biogenic and anthropogenic contribution to scetone mixing ratios in a rural environment, Atmospheric Environment, 34(29-30), 4997-5006, 2000.
34.Goldstein A., Schade W., Whole Ecosystem Measurements of Biogenic Hydrocarbon Emission, Department of Environmental Science, Policy, and Mangement Ecosystem Sciences Division 151 Hilgard Hall University of California Berkeley, CA 94720-3110, (510)643-6449,2001.
35.Guenther, A., Chris Geron , Tom Pierce , Brian Lamb , Peter Harley , Ray Fall , Natrual emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America , Atmospheric Environment 34, pp. 2205~2230, 2000.
36.Guenther, A., Wilkinson, J., Pierce, T., Vukovich, J., Benjamin, M.T., Development of Biogenic Emission Estimates for Air Quality Modeling, http://www.ladco.org/biogenics/whitepaper-biog.htm, 2002.
37.Guenther, A., P. Zimmerman, P. Harley, R. Monson, and R. Fall, Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses, J. Geophys. Res., 98, pp.12609-12617, 1993.
38.Guenther, A., P. Zimmerman, and M. Wildermuth, Natural volatile organic compound emission rate estimates for U.S. woodland landscapes, Atmos. Environ., 28, pp.1197-1210, 1994.
39.Guenther, A., Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmospheric Environment 34, 2000.
40.Guenther, A., The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems, Chemosphere49, 837-844, 2002.
41.Gunnar W. Schade and Allen H. Goldstein, Fluxes of osygenated volatile organic compounds from a ponderosa pine plantation, Journal of Geophysical Research, Vol. 106, No, D3, Pages 3111-3123, 2001.
42.Gunnar, W., Schade and Allen H. Goldstein, Plant physiological influences on the fluxes of oxygenated volatile organic compounds from ponderosa pin trees, Journal of Geophysical Research .Vol. 107, No. 2002.
43.Gunnar, W. Schade, Allen H. Goldstein, Dennis W. Gray, Manuel T. Lerdau, Canopy and leaf level 2-methyl-s-buten-2-ol fluxes from a ponderosa pine plantation, . Atmospheric Environment 34, 3535~3544, 2000.
44.Gunnar, W. Schade and Allen H. Goldstein ,Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. D3, PAGES 3111-3123, 2001.
45.Harrison, D., M.C. Hunter, A.C. Lewis, P.W. Seakins, T.V. Nunes, C.A. Pio, Isoprene and monoterpene emission from the coniferors species Abies Borisii-regis—implications for regional air chemistry in Greece, Atmospheric Environment 35, 4687~4698, 2001.
46.Harley, P, Verity Fridd-Stroud , James Greenberg , Alex Guenther , and Pérola Vasconcellos , Emission of 2-methyl-3-buten-2-ol by pines: A potentially large natural source of reactive carbon to the atmosphere , J. Geophys. Res. , pp. 25479~25486, 1998.
47.Helmig D., A. B. Guenther , P. Harley , , L. Klinger , L. Vierling , P. Zimmerman , C. Geron ,BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS(BVOCs) I.IDENTIFICATIONS FROM THREE CONTINENTAL SITES IN THE U.S., Chemosphere, Vol. 38, No. 9, pp. 2163-2187, 1999
48.Isebrands, J. G., A. B. Guenther , P. Harley , D. Helmig , L. Klinger , L. Vierling , P. Zimmerman , C. Geron , Volatile organic compound emission rates from mixed deciduous and coniferors forests in Northern Wisconsin USA , Atmospheric Environment 33, pp. 2527~2536, 1999.
49.Jackson, L., Effect of shade on leaf structure of deciduous tree species, Ecology, 48, pp. 498-499, 1966.
50.Jurik, T., Temporal and spatial patterns of specific leaf weight in successional northern hardwood tree species, American Journal of Botany, 73, pp. 1,083-1,092, 1986.
51.Kamens, R., Jang, M., Lee, S., Jaoui, M., Department of Environmental Sciences and Engineering, 2001.
52.Karl, T., R., Fall,P. J. Crutzen,A. Jordan,and W.Lindinger, High concentrations of reactive biogenic VOCs in the free troposphere during late autumn , Geophys. Res .Lett., 28,507-510, 2001.
53.Karl, T., R., Guenther, A., Lindinger, C., Jordan, A., Fall, R., Lindinger, W., Eddy covariance measurements of oxygenated volatile organic compound fluxs from crop harvesting using a redesigned proton-transfer- reaction mass spectrometer, J. Geophys. Res., 106, 24157-24167, 2001.
54.Karl, T., C. Spirig, P. Prevost, C. Stroud, J. Rinne, J. Greenberg, R. Fall, and A. Guenther, Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry, Atmospheric Chemistry and Physics Discuss., 2, 999-1033, 2002.
55.Kempf, K., Eugene Allwine, Hal Westberg, Candis Claiborn and Brian Lamb, Hydrocarbon Emissions from Spruce Species Using Environmental Chamber and Branch Enclosure Methods, Atmospheric Environment, Vol.30, No, 9. pp.1381~1389, 1996.
56.Kesselmeier, J., Bode, K., Hofmann, U., Muller, H., Schafer, L., Wolf, A., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M., Foster, P., Ferrar, C., Jacob, Fugit, J. L., Dutaur, L., Simon, V., Torres, L., Emission of short chained organic acid,aldehydes and monoteroenes form Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmospheric Environment 31, 119-133, 1997.
57.Kesselmeier, J., K. Bode, C. Gerlach, E-M. Jork, Exchange of Atmospheric Formic and Acetic Acids With Tree and Crop Plants Under Controlled Chamber and Purified Air Conditions, Atmospheric Environment Vol. 32, No 10 pp. 1765~1775, 1998.
58.Kesselmeier, J., K. Bode, L. Schäfer, G. Schebeske, A. Wolf, E.Brancaleoni, A. Cecinato, P. Ciccioli, M. Frattoni, L. Dutaur, J. L. Fugit, V. Simon and L.Torres, Simultaneors Field Measurements of Terpene and Isoprene Emissions from two Dominant Mediterranean Oak Species in Relation to a North American Species, Atmospheric Environment Vol. 32, No. 11, pp. 1947-1953, 1998.
59.Keymeulen, R., N. Schamp, and H. V. Langenhove: Uptake of gaseous Toluene in plant leaves: A two compartment model, Chemosphere 31 (8), 3,961-3,975, 1995.
60.Kirstine, W., Ian Galbally and Yuerong Ye, Martin Hooper, Emissions of volatile organic compounds (primarily oxygenated species) from pasture, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. D9, PAGES 10605-10619, 1998.
61.Lamb, B., A. Guenther, D. Gay, H. Westberg, A national inventory of biogenic hydrocarbon emission. Atmospheric Emvironment 21(8), 1695-1705, 1987.
62.Lamb, B., D. Gay, H. Westberg, and T. Pierce, A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model, Atmos. Environ., vol. 27A, pp. 1,673-1,690, 1993.
63.Lamb, B., Grosjean D., Pun B., Setigneur C., Review of the emission, atmospheric chemistry, and gas/particle partition of biogenic volatile organic compounds and reaction products. Atmospheric and Environmental Research, Inc., 1999.
64.Heiden, A. C., and K. Kobel, R. Koppmann, M. Shao, and J. Wildt: Toluene emissions from plants, Geophys. Res. Letters 26 (9), 1,283-1,286., 1999.
65.Monk, C., G. Child, and S. Nicholson, Biomass, litter, and leaf surface area estimates of an oak-hickory forest, Oikos, 21, pp. 138-141, 1970.
66.Nikolov, N. T., Massman, W.J., Schoettle, A.W., Coupling biochemical and biophysical processes at the leaf level:an equ ilibrium photosynthesis model for leaves of C3 plants.Ecol. Model.80, 205-235, 1995.
67.Owen, S.M., C. Boissard , R. A. Street , S. C. Duckham , O. Csiky and C. N. Hewitt , Screening of 18 Mediterranean Plant Species for Volatile Organic Compound Emissions , Atmospheric Environment Vol. 31, pp. 101~117, 1997.
68.Owen, S.M., Christophe Boissard, C. Nicholas Hewitt, Volatile organic compornds (VOCs) emitted from 40 Mediterranean plant species: VOCspeciation and extrapolation to habitat scale, Atmospheric Emvironment 35, 5393-5409, 2001.
69.Owen, S.M., Harley, P., Guenther, A., Hewitt, C.N., Light dependency of VOC emssion from selected Mediterranean plant species. Atmospheric Environment 36, 3147-3159, 2002.
70.Randal S. Martin, Ignacio Villanueva, Jingying Zhang, and Carl J. Popp, Nonmethane Hydrocarbon, Monocarboxylic Acid, and Low Molecular Weight Aldehyde and Ketone Emissions from Vegetation in Central New Mexico, Environmental Science & Technology, 2186-2192, 1999.
71.Penuelas, J., Llusia J., Seasonal patterns of non-terpenoid C6-C10 VOC emission form seven Mediterranean woody species. Chemosphere 45, 237-244, 2001.
72.Pierce, T., B. Lamb, and A. Meter, Development of a biogenic emissions inventory system for regional scale air pollution model, Proceedings 83rd Air and Waste Management Association Annual Meeting, Pittsburgh, PA, 1990.
73.Pierce, T., C. Geron, L. Bender, R. Dennis, G. Tonnesen, and A. Guenther, Influence of increased isoprene emissions on regional ozone modeling, J. Geophys. Res. 103, 25,611-25,629, 1998.
74.Pierce, T., Geron, C., Pouliot, G., Vukovich, J., Kinnee, E., INTEGRATION OF THE BIOGENIC EMISSIONS INVENTORY SYSTEM (BEIS3) INTO THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM, NOAA/ERL/ARL, Research Triangle Park, NC 27711, 2002.
75.Prevot, A.S.H., J. Commen, M. Baumle, and M. Furger; Diurnal variations of volatile organic compounds and local ciculation systems in an Alpine valley , Atmos. Environ., 34,1413-1423, 2000.
76.Rapparini, R., Rita Baraldi, Osvaldo Facini, Seasonal variation of monoterpene emission from Malus domestica and Prunus avium, Phytochemistry 57, 681-687, 2001.
77.Rinne, H.J.I., Guenther, A., Greenberg, J.P., Harley P., Isoprene and monoterpene fluxes measured above Amazonian rainforest and their dependency on light and temperature. Atmospheric Environment 36, 2421-2426, 2002.
78.Russell, K. Monson, Manuel T. Lerdau, Thomas D. Sharkey, David S. Schimel, Ray Fall, Biological Aspects of Constructing Volatile Organic Compound Emission Inventories, Atmospheric Environment Vol. 21, pp. 2989~3002, 1995.
79.Sabillón, D., Lázaro V. Cremades, Diurnal and seasonal variation of monoterpene emission rates for two typical Mediterranean species (Pinus pinea and Quercus ilex) from field measurements-relationship with temperature and PAR, Atmospheric Environment 35, 4419-4431, 2001.
80.Schade, G.W., Goldstein, A.H., Lamanna, M.S., Are monoterpene emissions influenced by humidity? , Geophys. Res. Lett., 26(14), 2187-2190, 1999b.
81.Schade, G.W., Goldstein, A.H., Fluxes of oxygenated volatile orangic compounds from a ponderosa pine plantation, J Geophys. Res., 106(D3), 3111-3123, 2001.
82.Singh, H.B., M. Kanakidou, P.J. Crutzen, and D.J. Jacob, High concentration and photochemical fate of oxygenated hydrocarbon in the global atmosphere, Nature, 378, 50-54, 1995.
83.Staudt, M., Bertin, N., Hansen, U., Seufert, G., Ciccioli, P., Foster, P., Frenzel, B., Fugit, J. L., Seasonal and diurnal patterns of monoterpene emission form Pinus pinea under field conditions. Atmospheric Environment 31, 145-156, 1997.
84.Tani A., S. Nozoe, M. Aoki, C.N. Hewitt, Monoterpene fluxes measured above a Japanese red pine forest at Oshiba platear, Japan, Atmospheric Environment 36, 3391-3402, 2002.
85.Thomas, Karl, Alex Guenther, Christian Lindinger, Alfons Jordan, Ray Fall, and Werner Lindinger, Eddy covariance measurements of oxygenated volatile organic compound fluxes from crop harvesting using a redesigned proton-transfer-reaction mass spectrometer, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. D20, PAGES 24157-24167, 2001.
86.Yatagai, M., M. Ohira, T. Ohira, S. Nagai, Seasonal Variations of Terpene Emission from Trees and Influence of Temperature, Light and Contat Stimulation on Terpene Emission, Chemosphere, Vol, 30, No. 6, pp. 1137-1149, 1995.
87.Williams, E., A. Guenther, and F. Fehsenfeld, An inventory of nitric oxide emissions from soils in the United States, J. Geophys. Res., 97, 7,511-7,519, 1992.
88.Wohlfahrt, G., Bahn, M., Tappeiner, U., Cernusca, A., A model of whole plant gas exchange for herbaceous species from mountain grassland sites differing in land use, Ecological Modelling 125, 173-201, 2000.
89.Zimmerman P., Testing of hydrocarbon emissions from vegetation, leaf ltter and aquatic surfaces, and development of a method for compiling biogenic emission inventories, EPA-450-4-70-004, U.S. Environmental Protection Agency, Research Triangle Park, NC, 1979.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊