跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/20 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施俊誌
研究生(外文):Chum-Chih Shih
論文名稱:1.25Cr-0.5Mo合金鋼管之潛變與週期潛變行為之研究
論文名稱(外文):The Study of static and cyclic Creep behavior of 1.25Cr-0.5Mo Steel Pipe
指導教授:張銘坤張銘坤引用關係
指導教授(外文):Ming-Kuen Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:74
中文關鍵詞:剩餘壽命週期潛變實驗潛變
外文關鍵詞:Remnant liftCyclic creep testCreep
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對肥粒鐵系之無縫合金鋼管(P11, 1.25 Cr-0.5 Mo)進行高溫潛變與週期潛變實驗。於潛變實驗848 – 923 K溫度範圍中,其應力指數為3.26 – 4.23之間,與真實應力值相符,故潛變機制屬於差排潛變,真實潛變活化能的平均值為365 KJ。
週期潛變實驗溫度873 K中,其應力指數為4.37 – 4.69之間,真實潛變活化能的平均值為431 KJ。由實驗結果得知,週期潛變之應力指數與潛變活化能皆大於固定負載之潛變,並且週期應力作用會縮短潛變破斷時間。由金相與電子顯微鏡的組織變化觀察得知,經由潛變實驗後破斷面主要由延性穿晶潛變破壞所構成。
週期應力作用會出現加工硬化轉變成軟化的現象,隨平均應力提高,會明顯提高最小潛變速率,初期加工硬化之後會快速轉變成軟化,換言之,在硬化轉變成軟化的過程同時也意味著潛變由穩態期進入加速期,相當接近破斷時間。
本研究之鋼管材料以 Larson-Miller 與 Manson-Haferd 參數法所進行的壽命預測,維持管材長期使用15年而不致發生潛變破壞,1.25Cr-0.5Mo合金鋼之安全操作條件為溫度773 K(即500℃)及應力50 MPa以下。
The study of ferritic alloy steel tube (P11, 1.25Cr-0.5Mo) carries out static and cyclic creep tests in tension at elevated temperature. In the temperature range 848 – 923 K, the 1.25Cr- 0.5Mo alloy steel exhibited an apparent stress exponent of 3.26 – 4.23 in conformity with true stress exponent and an apparent activation energy of 365 kJ/mol for static creep. The static creep belongs to dislocation creep.
At the temperature of 873 K, the 1.25Cr- 0.5Mo alloy steel exhibited an apparent stress exponent of 4.37 – 4.69 and an apparent activation energy of 431 kJ/mol for cyclic creep. The values of apparent stress exponent and activation energy for cyclic creep of the 1.25Cr- 0.5Mo alloy steel were higher than those obtained from the static creep measurements. SEM fractograph showing transgranular facture in creep tests and exhibits transgranular facture characterized by dimples.
The work hardening in initial stage is observed and will be changed and softening with increasing the mean stress. While increasing with the stress, will obviously raise the steady state creep rate. On the other hand, cyclic creep enters from steady state creep one and accelerating creep one, quite close to creep rupture time. The cyclic stressing reduces the creep life at high temperature.
The remnant lift of the research was raised parameter methods of Larson-Miller in 1952 and Manson-Haferd in 1953, which aimed at creep of the 1.25Cr- 0.5Mo alloy steel for analysis and assessment, and the suitableness of predictable remnant lift. According with general pipe service life 15 years without creep rupture, the condition of safety in operation of 1.25Cr- 0.5Mo alloy steel is under temperature 773 K and stress 50 MPa.
目 錄
摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vii
表目錄 ix
符號說明 x
一、緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的與流程 3
二、基本理論 5
2.1 鉻鉬合金鋼 5
2.2 潛變 5
2.3 潛變曲線 7
2.3.1 第一階段潛變 7
2.3.2 第二階段潛變 8
2.3.3 第三階段潛變 8
2.4 潛變變形機制 10
2.4.1 差排滑移 10
2.4.2 差排潛變 10
2.4.3 擴散潛變 12
2.4.4 晶界滑移 13
2.5 潛變之應力與溫度函數 15
2.5.1 應力函數 16
2.5.2 溫度函數 17
2.5.3 時間硬化 18
2.5.4 應變硬化理論 18
2.6 參數模式 19
2.6.1 Larson-Miller參數法 20
2.6.2 Manson-Haferd參數法 21
三、實驗方法 25
3.1 金相觀察 25
3.2 材料及規格 25
3.3 潛變實驗 26
3.4 實驗條件 30
3.5 實驗步驟 32
3.6 SEM破斷面觀察 33
四、結果與討論 34
4.1金相觀察 34
4.2 定溫下應力對潛變之影響 35
4.3 定應力下溫度對潛變之影響 37
4.4 定溫下週期應力對潛變之影響 39
4.5 潛變應力指數 43
4.5.1 週期潛變應力指數 44
4.6 潛變活化能 46
4.6.1 週期潛變活化能 49
4.7 Larson-Miller參數法 50
4.7.1 週期潛變壽命評估 57
4.8 Manson-Haferd參數法 60
4.9 SEM破斷面觀察 63
五、結論 69
5.1 結論 69
六、參考文獻 70
自傳 74
參考文獻
[1]機械工程手冊1;工程材料學,初版,五南圖書,pp.3-70~3-86,2002。
[2]姚枚等人;金屬機械材性能,初版,全華科技圖書,台北,pp. 513 - 515,1996。
[3]D. W. A., “Mechanics of Solids and Structures,” pp. 746-760, 1990.
[4]J. D. Whittenberger, “Creep, Stress-Rupture, and Stress-Relaxation testing,” Metals Handbook, Vol. 8, Mechanical Testing, ASME, pp. 302-306, 1985.
[5]S. S. Manson, “Fatigue: a complex subject – some simple approximations, Experimental mechanics,” Vol. 5, No. 7, pp. 193, 1965.
[6]R. I. Klueh, Journal of Nuclear, pp.41, 1985.
[7]蔡隆昌;鍋爐水牆管高溫潛變之特性研究,雲林科技大學,碩士論文, pp. 1-3,2002。
[8]Annual Book of ASTM Standards: Iron and Steel Products, ASTM, Vol. 01. 01, pp. 195-216, 1995.
[9]C. E. Jaske, “Fatigue and cyclic deformation behaviors of iron aluminide,” Materials Science and Engineering, pp. 211-218, 1998.
[10]Keisuke Ishikawa, “Creep behaviors of highly pure aluminum at lower temperature,” Materials Science and Engineering, pp. 154-156, 1997.
[11]L. Kunz, “Cyclic stress-strain behaviors of 9Cr-1Mo steel at positive mean stress,” Materials Science and Engineering, pp. 555-558, 2001.
[12]L. Cheng, P. Liu, Z. Zhao, D. O. Northwood, “Room temperature creep of a high strength steel,” Material and Design, Vol.22, pp. 325-328, 2001.
[13]R. K. Penny and D. L. Marrioat, “Design for Creep,” pp. 8-237, 1995.
[14]J. Aktaa, M. G. Horsten, and R. Schmitt, “Effects of hold time and neutron irradiation on the low-cycle fatigue behavior of type 316-CL and their consideration in a damage model,” Nuclear Engineering and Design, pp. 111-117, 2002.
[15]ASME Boiler and Pressure Vessel Code, Section III, Code Case N47, 1974.
[16]G. E. Dieter, “Mechanical metallurgy (2nd ed.),” McGraw-Hill, pp. 451~489, 1976.
[17]江家慶;潛變、應力腐蝕與銲接裂紋之特論,海洋大學,碩士論文,pp. 12-19, 2000。
[18]J. N. Wang and T. G. Nieh, “Effects of the peierls stress on the transition from power law creep to Harper – Dorn creep,” Acta Mater, Vol. 43, No. 4, pp. 1415-1419, 1995.
[19]F. R. N. Nabarro, “Report of a conference on the strength of solids,” Physical Society, London, pp. 75, 1948.
[20]R. L. Coble, “A model for boundary diffusion controlled creep in polycrystalline materials,” Journal of Applied Physics, Vol. 34, pp. 1679-1682, 1963.
[21]郭晉全;鍋爐管材殘餘壽命評價之研究,逢甲大學,碩士論文,pp. 9-18,2000。
[22]劉松柏譯;材料強度破壞學,成璟技術叢書,pp. 91-158。
[23]J. J. Skrzypek and R. B. Hetnarski, “Plasticity and Creep,” pp. 358-380.
[24]Howard R. Voorhees, “Assessment and Use of Creep-Rupture Properties,” Metals Handbook, Vol. 8, Mechanical Testing, ASME, pp. 333-334, 1985.
[25]F. R. Larson and J. Miller, “A time-temperature relationship for ruptures and creep stresses,” Trans. ASME, pp. 174, 1952.
[26]C. Lalitha, R. N. Ghosh, “Clip: computer software for creep life prediction of engineering materials,” Engineering Fracture Mechanics, Vol. 54, No. 1, pp. 71-73, 1996.
[27]A. K. Ray, Y. N. Tiwari, R. K. Sinha, P. K. Roy, S. K. Sinha, “Remnant lift assessment of service-exposed pendent superheater tubes,” Engineering Failure Analysis, Vol. 9, pp. 83-92, 2002.
[28]D. G. Pavlou, “Creep life prediction stepwise constant uniaxial stress and temperature condition,” Engineering Structures, Vol. 23, 2001, pp. 656-662.
[29]S. S. Manson and A. M. Haferd, “A linear time-temperature relation for extrapolation of creep and stress-rupture data,” NACA TN 2890, 1953.
[30]L. H. Toft, R. A. Marsden, “Structural processes in creep,” Journal of the Iron and Steel Institute, pp. 272, 1963.
[31]林國政;鉻鉬鋼管材潛變顯微組織研究,臺灣大學,碩士論文,pp. 1-23,2000。
[32]S. Straub, P. Polcik, D. Henes and W. Blum, “Simulation of the long-term cyclic creep behaviors of a low alloyed ferritic chromium steel,” Materials Science and Engineering, pp. 1037-1040, 1997.
[33]R. G. Baker, and J. Nutting, “The tempering of 2.25Cr-1Mo steel after Quenching and Normalizing,” Journal of the Iron and Steel Institute, Vol. 192, pp. 257-268, 1959.
[34]Z. Y. Ma, S. C. Tjong, Z. G. Wang, “Cyclic and static creep behaviors of Al-Cu alloy composite reinforced with in-situ Al2O3 and TiB2 particulates,” Materials Science and Engineering, pp. 177-187, 1999.
[35]Y. Li, S. R. Nutt, F.A. Mohamed, Acta Mater, 26A-3119, 1997.
[36]R. L. Klueh, “Elevated-Temperature Properties of Ferritic Steels,” Metals Handbook, Vol.1, Properties and Selection:Irons, Steels, and High Performance Alloys, ASME, pp. 374-375, 1990.
[37]Baldev Raj, B. K. Choudhary, R. K. Singh Raman, “Mechanical properties and non-destructive evaluation of chromium-molybdenum ferritic steels for steam generator application,” International Journal of Pressure and Vessels Piping, 2004.
[38]M. G. Gemmill, “Creep Resisting Steels,” Metals Handbook, Vol.7, A comprehensive treatment, ASME, pp. 493-519, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top