跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雅婷
研究生(外文):Ya-Ting Chang
論文名稱:嘉磷塞在土地處理系統中降解之研究
論文名稱(外文):A Study of Glyphosate Degradation on The Land Treatment System
指導教授:袁又罡袁又罡引用關係
指導教授(外文):Yu-Kang Yuan
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:86
中文關鍵詞:土地處理系統嘉磷塞葎草咸豐草蔓澤蘭AMPA
外文關鍵詞:Bidens albaHumulus scandensaminomethyphosphonic acid (AMPA)Land treatment systemGlyphosateMikania cordata
相關次數:
  • 被引用被引用:2
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
本研究探討除草劑嘉磷塞施用於土地處理系統之漫灌區中對優勢植物種的死亡、轉運、吸收及代謝之情形,並瞭解嘉磷塞施用前後土地處理系統中漫灌區水質之去除成效。由研究成果顯示優勢植物蔓澤蘭能吸收高量的嘉磷塞達2986.53 mg glyp╱kg 植物乾重。另外,植物對嘉磷塞的代謝能力由高至低分別為蔓澤蘭、葎草、咸豐草,三者皆能去除體內50%的嘉磷塞。一般而言,植物體中嘉磷塞主要的代謝物質是AMPA,觀察植物體內AMPA的代謝情形發現葎草有較好的代謝成效,再者是咸豐草,最差的是蔓澤蘭,且三種優勢植物對嘉磷塞的去除成效皆比AMPA還好。植物體內的嘉磷塞經由轉化後會形成AMPA,計算AMPA相對嘉磷塞的比例後發現三種植物其比例皆介於0.48~2.54%之間,顯示植物體中AMPA對嘉磷塞的相對累積量相當低,此可能是因為植物代謝嘉磷塞的同時,也大量的代謝AMPA所致。在三種優勢植物失水率對嘉磷塞降解成效的比較中,發現葎草及咸豐草的失水率與植體中嘉磷塞降解之關係有些相關性,其中又葎草的關係較為明顯,有隨失水率升高產生代謝延緩的現象。本研究為了瞭解嘉磷塞及其代謝物質AMPA在植物體內的轉運情形,因此將咸豐草植株裁切成根、莖、葉三部份,測定三部位之嘉磷塞及其代謝物質AMPA之濃度,結果顯示嘉磷塞主要的貯存位置是葉片。AMPA則主要累積於根部(42%)及葉片(36%),但經由植物的轉運後,莖及根部的AMPA含量會減少,最後主要累積於葉片上(56%)。由嘉磷塞施用前後比較了土地處理系統中漫灌區水質之去除成效,發現嘉磷塞對漫灌區水質磷酸鹽的去除效率並無顯著之影響。但是,各採樣點的重金屬鐵及鋅卻有釋出的現象發生。因此於實驗室中所進行的不同濃度的嘉磷塞對重金屬鐵及鋅吸附之研究,發現土壤溶液中的嘉磷塞似乎不是造成重金屬鐵脫附的主要關鍵。但對重金屬鋅而言,高濃度的嘉磷塞土壤溶液(100mg/L)會略為影響土壤對重金屬鋅的吸附能力,但是其影響不致於造成重金屬鋅的釋出。因此判斷嘉磷塞不會直接地影響漫灌區土壤對重金屬的吸附,推論漫灌區中重金屬鐵及鋅的釋出應該是受到植物的影響較大,其乃植物受嘉磷塞藥害無法再吸收重金屬,又植物死亡後會釋出大量的重金屬所致。
This research was investigated that Glyphosate was metabolized, absorbed and transolcated for three dominant plant on irrigated area of the Land treatment system, and to understand the effect of water quality of irrigated area of the Land treatment system before and after spraying Glyphosate. The result of the experiment showed that Mikania cordata could absorb a large amount of Glyphosate and reach the level of 2986.53 mg glyp/ kg plant dry weight. In addition, metabolism of three plant to Glyphosate from high to low were Mikania cordata, Humulus scandens, Bidens alba respectively, but Glyphosate could be metabolized more than 50% for the body of three plant. Generally, aminomethyphosphonic acid (AMPA) is the major metabolite of Glyphosate in plant. For three dominant plants, the amount of AMPA metabolized were respectively Humulus scandens, Bidens alba, Mikania cordata from large to less, and Glyphosate was metabolized much than AMPA. Glyphosate was converted to AMPA by the plant. After calculating, the ratio of AMPA to Glyphosate measured in the amount of three plants is 0.48~2.54%. The data showed that the accumulation amount of AMPA in three plants was quite few. This possible reason was that AMPA was metabolized largely at the same time when the plants were metabolizing Glyphosate. Compared the percentage of water loss of three plants with metabolism of three plants to Glyphosate, we found a little of relation. Humulus scandens had the most obvious phenomenon which the efficiency of metabolism became delayed with the percentage of water loss raised. Furthermore, in order to understnd Glyphosate and its metabolite AMPA was translocated in body of plant. We cut the Bidens alba into root, stem and leaf, and determined the amount of Glyphosate and AMPA. The result of experiment showed that the main storing sites of Glyphosate in plant ware leaves. AMPA was accumulated mainly in the root (42% ) and leaves (36% ). After translocating via plant, the AMPA content of stems and roots would be reduced, and mainly accumulated in the leaves finally (56%). Before and after spraying Glyphosate, we compared the removal efficiency of water quality of irrigated area in the Land treatment system. We found that Glyphosate did not make any influence to remove phosphate of river water in the irrigated area. However, the heavy metal iron and zinc were released in every sampled site of irrigated area after spraying Glyphosate. Further, we found that Glyphosate did not the main key to make heavy metal iron desorbed by experimenting with the soil-water solution contained heavy metal iron and zinc and Glyphosate of different concentration. However, the soil-water solution contained high concentration of Glyphosate will slightly influence heavy metal zinc adsorbed by soil, but it will be unlikely to release into the solution. Therefore, we judged that Glyphosate will not directly influence soil to adsorb heavy metal in irrigated area. And we concluded the the plants of irrigated area had a great effect upon the removal efficiency of heavy metal iron and zinc.
中文摘要 ..............................................................i
英文摘要 ..............................................................iii
誌謝 ..............................................................v
目錄 ..............................................................vi
表目錄 ..............................................................viii
圖目錄 ..............................................................ix
一、 緒論 ..............................................................1
二、 文獻回顧..........................................................4
2.1 土地處理系統.......................................................4
2.1.1 土地處理系統的應用研究...........................................5
2.2 嘉磷塞農藥結構、物理化學性質及毒性.................................8
2.2.1 嘉磷塞農藥結構、物理化學性質.....................................8
2.2.2 嘉磷塞毒性及其對生態、人體的影響................................11
2.3 嘉磷塞在環境中的降解..............................................11
2.3.1 嘉磷塞在土壤中微生物的代謝作用..................................13
2.3.2 嘉磷塞在土壤中的吸附作用........................................15
2.3.3 嘉磷塞在植物(雜草)中的作用、吸收代謝及轉運情形..................18
三、 材料與方法.......................................................23
3.1 土地處理系統末端漫灌區之建構......................................23
3.2 研究架構..........................................................23
3.3 漫灌區中嘉磷塞降解實驗............................................27
3.3.1 除草劑嘉磷塞的配製及噴灑劑量....................................27
3.3.2 除草劑嘉磷塞施用之方式..........................................27
3.3.3 採樣時程........................................................27
3.4 土壤基本性質分析..................................................29
3.4.1 粒徑分析........................................................29
3.4.2 酸鹼度(pH值)....................................................29
3.4.3 含水率測定......................................................29
3.4.4 有機物含量測定..................................................29
3.4.5 陽離子交換容量..................................................29
3.4.6 土壤有效磷的測定................................................30
3.4.7 土壤重金屬分析..................................................30
3.5 嘉磷塞分析實驗 ....................................................30
3.5.1 樣品之前處理--萃取及濃縮........................................30
3.5.2 衍生化步驟......................................................31
3.5.3 GC-MS儀器操作條件...............................................31
3.6 農藥噴灑前後對漫灌區水質中重金屬及磷酸鹽含量的變化................32
3.7 不同土壤的嘉磷塞降解實驗(批次式實驗)..............................32
3.8 土壤溶液中嘉磷塞對磷酸根的競爭吸附實驗............................32
3.9 不同濃度的嘉磷塞對水中重金屬鐵及鋅影響............................33
四、 結果與討論.......................................................34
4.1 土壤基本性質......................................................34
4.2 嘉磷塞對植物的作用及藥害..........................................36
4.3 植物體中嘉磷塞的代謝情形..........................................44
4.3.1 葎草............................................................44
43.2 蔓澤蘭...........................................................47
4.3.3 咸豐草..........................................................49
4.5 除草劑嘉磷塞施用後對漫灌區採樣點水質之變化........................57
4.5.1 漫灌區採樣點水質的pH、ORP及水溫之變化...........................57
4.5.2 磷酸鹽..........................................................59
4.5.3 重金屬鐵及鋅....................................................63
五、結論與建議........................................................67
5.1 結論..............................................................67
5.2 建議..............................................................68
參考文獻..............................................................70
1.中華土壤肥料農會,1995,土壤手析手冊,中華土壤肥料農會編印
2.方麗萍,2003,“台灣除草劑之近況”,農藥一路發電子報,第20158期,3月
3.王姿文、 林瑩峰、荊樹人、李得元、黃献文、陳瑋琪、黃國銓、黃炯棋,2001,“有機性農藥-達有龍(Diuron)在人工濕地中降解之初步探討”,第26屆廢水處理技術研討會論文集
4.王順成,“殺草劑之毒性”,1995,中華民國雜草協會簡訊,第二卷,第一期
5.王煥校,1990,污染生態學基礎,雲南大學出版社,雲南
6.王煥校,2000,污染生態學,高等教育出版社
7.王慶裕,1997,“香附子與玉米對嘉磷塞及甲基砷酸鈉除草劑之生長反應”,中華民國雜草協會簡訊,第四卷,第二期
8.王慶裕,雜草概論,1999,中興大學農藥經營人才管理訓練班講義
9.李國欽、林浩潭,1997,“土壤重金屬檢驗技術”,行政院農委會農藥毒物試驗所專題報導,第四十四期
10.汪晉三、黃新華、程國佩,1990,水化學與水污染,中山大學出版社,第一版,廣州
11.林欣怡、楊磊,2000,“人工溼地應用於工業廢水循環處理系統可行性之研究”,第二十五屆廢水處理研討會論文集
12.金�硠腄A1998,環境生態學:污染及其它逆壓對生態系結構與功能的影響,編譯館
13.施怡如、王慶裕,2001,水稻幼苗對嘉磷塞除草劑之耐性差異,國立中興大學,碩士論文
14.洪崑煌、王明光、陳尊賢、賴朝明、何聖賓、李達源,1996,土壤化學,國立編譯館
15.徐明玲,蔣慕琰,2000,台灣草坪草彩色圖鑑,行政院農業委員會農藥毒物試驗所
16.荊樹人、林瑩峰、李得元、王姿文、莊庭禎、林俊屹,2000,“水力負荷對人工溼地處理污染河水化學需氧量的影響”,第二十五屆廢水處理研討會論文集
17.袁又罡、孟培傑、范惠婷、李宏才、張雅婷,2002,“污水土地處理系統中植物相與水質改善之實場研究-表面流中金屬離子之去除成效”,第八屆海峽兩岸環境保護研討會
18.袁又罡、張雅婷、范惠婷、沈家鳳、郭書吟,2002a,“以現地土地處理系統處理污水中COD之探討”,第廿七屆廢水研討會
19.袁又罡、連萬福、范惠婷、李宏才、李櫻珠,2002b,“污水土地處理系統在水資源再生上的應用”,第十二屆下水道及水環境再生研討會
20.袁秋英、陳益明,華九頭獅子草對嘉磷塞之生理生化反應及耐藥性機制探討,國立臺灣大學,博士論文,2002
21.張碧員、張蕙芬,1997,台灣野花365天秋冬篇,木樹文化事業股份有限公司
22.張韻如,蔡文福,1998,“嘉磷塞對植物的藥害與EPSPS活性的關係”,中華民國雜草學會會刊,第十九卷,頁73-85
23.陳志彰、李志源, 2000,人工濕地改善水質之績效,國立海洋大學,碩士論文
24.陳鴻基、莊作權、李國欽,2004,“殺草嘉磷塞與磷離子在土壤粘粒上的競爭吸附”,中華民國雜草學會會刊,第十五卷,第二期
25.陳懷滿,2002,土壤中化學物質行為與環境質量,科學出版社,北京
26.曾四恭、張志誠,1996,“生活污水土壤處理”,能源、資源與環境,第9卷,第一期,頁52-66
27.農藥一路發,2004,2003年台灣農藥市場資料,http://www.ag168.com/
28.廖文如、蔡文褔,1988,嘉磷塞對茶苗生理之影響及扦插苗圃雜草防除之效果,國立台灣大學,碩士論文
29.廖進旺,黃振聲,2004,“農藥的毒性及危害”,行政院農業委員會農藥毒物試驗所期刊,第七十三期
30.劉玉雪、徐錠基,1996,“水空心菜濕地對市區污水之去除能力”,農業工程,第四十四卷,第一期,頁50-58。
31.蔣永正,1992,“嘉磷塞對香附子地下塊莖發芽活性之影響”,中華民國雜草協會會刊,第十三卷,第二期
32.龔書椿、陳應新、韓玉蓮、張靜貞,1996,環境化學,華東師範大學出版社
33.Alferness, P. L. and L. A. Wiebe, 2001, “Determination of Glyphosate and Aminomethylphosphonic Acid in Crops by Capillary Gas Chromatography with Mass-Selective Detection: Collaborative Study”, Joural of AOAC International, vol. 84, pp. 823-846
34.Bromilow, R. H. and K. Chamberlain, 2000, “The herbicide glyphosate and related molecules: physicochemical and structural factors determining their mobility in phloem”, Pest Management Science, vol. 56, pp. 368-373
35.Bromilow, R. H., K. Chamberlain, and J. A. Tench and R. H. Williams, 1993, “Phloem translocation of strong acids-Glyphosate, substituted phosphonic and sulfonic acids-in Ricinus communis L.”, Pesticide Science, vol. 37, pp. 39-47
36.Busse, M. D., A. W. Ratcliff, C. J. Shestak, and R. F. Powers, 2001, “Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities”, Soil Biology & Biochemistry, vol. 33, pp. 1777-1789
37.Dick, R. E. and J. P. Quinn, 1995, “Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation”, Appl Microbiol Biotechnol, vol. 43, pp. 545-55
38.Dion, H. M., J. B. Harsh, and H. H. Hill Jr., 2001, “Competitive sorption between glyphosate and inorganic phosphate on clay minerals and low organic matter soil”, Jounal of Radioanalytical and Nuclear Chemistry, vol.249, pp. 385-390
39.Forlani, G.. a., A. Mangiagalli, E. a. Nielsen, and C. M. Suardi, 1999, “Degradation of the phosphonate herbicide glyphosate in soil:evidence for a possible involvement of unculturable”, Soil Biology and Biochemistry, vol. 31, pp. 991-997
40.Franz, J. E., M. K. Mao, and J. A. Sikorski, 1997, Glyphosate: A Unique Global Herbicide, American Chemical Society
41.Gougler, J. A. and D. R. Geiger, 1984, “Carbon partitioning and herbicide transport in glyphosate-treated sugerbeet (Beta vulgaris)”, Weed Sci., vol. 32, pp. 546-551
42.Hall, J. C., E. H. Robert, and R. M. Zablotowicz, 2001, Pesticide Biotransformation in Plnats and Microorganisms, American Chemical Society, Washington. DC
43.IWA Special Group on use of Macrophytes in Water Pollution Control, 2000, Constructed Wetlands for Pollution Control, Scientific and Technical Report No.8, pp. 11-12
44.McConnell, J. S. and L. R. Hossner, 1985, “PH-Dependent adsorption Isotherms of Glyphosate”, J. Agric. Food Chem., vol. 33, pp. 1075-1078
45.Mckinlay, R.G. and K. Kasperek, 1999, “Observations on decontamination of herbicide-polluted water by marsh plant systems”, Wat. Res., vol. 33, pp.505-522
46.Mitsch W. J., 1995, “Restoration of our lakes and rivers with wetland─An important application of ecological engineering”, Wat. Sci. Tech., vol. 31, pp. 167-177
47.Moore, M. T., J. H. Rodgers Jr., C. M. Cooper, and S. Smith Jr., 2000, “Constructed wetlands for mitigation of atrazine-associated agricultural runoff”, Environmental Pollution, vol. 110, pp. 393-399
48.Morillo E., T. Undabeytia, C. Maqueda, and A. Ramos, 2002, “The effect of dissolved glyphosate upon the sorption of copper by three selected soils”, Chemosphere, vol. 47, pp. 747-752
49.Petit, V., R. Cabtidenc, R. P. J. Swannell and R. S. Sokhi, 1995, “Review of strategies for modeling the environmental fate of pesticides discharged into riverine systems”, Environ. Int., vol. 21, pp. 167-176,
50.Royer, A., S. Beguin, J. C. Tabet, S. Hulot, M. A. Reding, and P. Y. Communal, 2000, “Determination of Glyphosate and Aminomethylphosphonic Acid Residues in Water by Gas Chromatography with Tandem Mass Spectrometry after Exchange Ion Resin Purification and Derivatization. Application on Vegetable Matrixes”, Anal. Chem., vol. 72, pp. 3826 – 3832
51.Rueppel, M. L., B. B. Brightwell, J. Schaefer, and J. T. Marvel, 1997, “Metabolism and Degradation of Glyphosate in Soil and Water”, J. Agric. Food Chem., vol.25, pp. 517-528
52.Shoval, S., and S. Yariv, 1979, “The interaction between roundup (Glyphosate) and Montmorillonite. Part I. Infrared study of the sorption of Glyphosate by Montmorillonite”, Clays and Clay miner., vol. 27, pp. 19-28
53.Sprank, P., W. F. Meggitt, and D. Penner, 1975, “Adsorption, mobility, and Microbial Degradation of Glyphosate in the Soil”, Weed Sci., vol. 23, pp. 229-234
54.The U.S. Department of Agriculture, Forest Service by Information Ventures, Inc. , 2002, Pesticide Fact Sheet: Glyphosate
55.The U.S. Environmental Protection Agency, 2002, Ground Water & Drinking Water Technical Factsheet on: Glyphosate
56.Tilquin, M., J. P. Peltier, and G. Marigo, 2000, “Mechanisms for the Coupling of Iron and Glyphosate Uptake inb Catharanthus roseus Cells”, Pesticide Biochemistry and Physiology, vol. 67, pp. 145-154
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 5.李珠串、陳錦洲、林正芳、嚴劍琴(1999),「無線非同步傳輸模式技術之介紹」,電信研究雙月刊,第29卷第2期,pp.157-172
2. 16.蔡志宏(2002),「無線區域網路政策決定產業走向」,通訊雜誌,4月號,pp.12-13.
3. 15.黃家齊,「行動通訊-蜂巢式行動電話系統技術之發展」,通訊雜誌,pp.91-93
4. 18.賴玉玟(1999),「Wireless ATM媒體進接控制技術之研究」,電信研究雙月刊,第29卷第1期,p.p.95-110
5. 17.鄭瑞光(1999),「GSM的分封數據服務-GPRS」,電腦與通訊,第76期,pp.48-57.
6. 14.黃南盛(2001),「SDR軟體無線電技術」,電腦與通訊,第96期,pp.8-17.
7. 13.梁昇凱(2002),「無線區域網路市場發展趨勢」,通訊雜誌,4月號,pp.16-20.
8. 1.于岱民(2001),「GPRS系統第一層技術」,電腦與通訊,第98期,pp.4-10
9. 10.曹孝櫟、林嘉慶(2000),「VoIP在第三代行動通訊之技術與現況」,電腦與通訊,pp.46-91
10. 9.高凱聲(2002),「無線區域網路管理機制探討」,通訊雜誌,4月號,pp.4-13.
11. 3.何瑞光(2000),「邁向第三代行動通訊的關鍵-GPRS」,通訊雜誌,pp.80-85
12. 24.陳鴻基、莊作權、李國欽,2004,“殺草嘉磷塞與磷離子在土壤粘粒上的競爭吸附”,中華民國雜草學會會刊,第十五卷,第二期
13. 22.張韻如,蔡文福,1998,“嘉磷塞對植物的藥害與EPSPS活性的關係”,中華民國雜草學會會刊,第十九卷,頁73-85