跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/01 08:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李青桂
研究生(外文):Kuei-Cheng Lee
論文名稱:鉻鉬合金鋼高溫潛變行為之研究
論文名稱(外文):The Research of the Creep behavior for the Cr-Mo Alloy Steel
指導教授:張銘坤張銘坤引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:75
中文關鍵詞:Ω 法9Cr–1Mo 合金鋼Larson-Miller 參數法潛變
外文關鍵詞:Larson-Miller parameterΩ method9Cr-1Mo alloy steelcreep
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Cr–Mo 合金鋼是具有良好的抗潛變特性、成形性、銲接性及抗腐蝕性等優點,故運用在發電廠和石油化學工業的壓力管、蒸氣管及蒸氣產生處理設備及核能反應之蒸汽產生材料上,長期使用約 600 ℃的溫度。由於在高溫下長時間使用,易產生潛變破壞,造成重大之財物損失及嚴重影響電廠運轉安全,故需對潛變壽命加以評估。
Cr–Mo合金鋼為鍋爐中廣泛使用之低合金耐熱鋼,本研究以此為試驗材,針對不同溫度與應力條件,進行高溫潛變試驗。探討材料之特性並以Larson–Miller參數法與Ω法進行評估,建立本鋼材潛變壽命評估方法。
結果顯示溫度與應力對材料壽命之影響十分顯著,欲維持9Cr–1Mo合金鋼之長期穩定使用,而不致遭受潛變損壞,其使用條件應限制於898 K及30 MPa應力以下。
The Cr-Mo series alloy steel possesses many advantages: such as good creep resistance, easy welding-ability and good corrosion resistance etc. Thus this type of steel is extensively used in power plants and petroleum of chemical industry for containment vessels, super-heater tube and steam pipes and in nuclear energy react for steam pipes. Components of steam pipes are chronically used at the temperature of about 600℃。 Therefore, creep fracture is the major ultimate failure mechanism during service. It may cause great property losses and influence on the power plant operating safety. Considerable research has been devoted to the assessment of creep-life by creep tests.
The low heat-resisting steel of the Cr-Mo alloy steel is extensively used in the boiler. This research is regarding 9Cr-1Mo alloy steel processed in the high-temperature creep tests under different temperature and stress condition. By discussing the property of the material and using Larson-Miller parameter and Ω method to assessment of the creep-life, in the research, I hope to establish basic high-temperature creep database.
The result shows that the temperature and stress have great influence on the creep-life of Cr-Mo. In order to maintain the long-term stability of the usage of 9Cr-1Mo alloy steel and reduce the damage of creep, the service condition of this material should be limited to 898 K and 30 MPa。
中文摘要....................i
英文摘要...................ii
誌謝......................iii
目錄.......................iv
圖目錄....................vii
表目錄.....................ix
符號說明.......................x
第一章 緒論....................1
1.1 前言.................... 1
1.2 研究動機..................2
1.3 研究目的..................2
1.4 研究流程..................3
第二章 文獻回顧...............4
2.1 9Cr-1Mo 鋼材簡介..........4
2.2 潛變理論..................4
2.3 潛變曲線..................6
2.3.1 第一階段潛變............7
2.3.2 第二階段潛變............8
2.3.3 第三階段潛變 ............8
2.4 潛變變形機制...............11
2.5 變形機構圖.................14
2.6 潛變之應力、溫度、時間函數.....16
2.6.1 應力函數..................16
2.6.2 時間函數..................17
2.6.3 溫度函數..................18
2.7 參數法簡介..................19
2.7.1 Monkman-Grant 法..............19
2.7.2 Larson-Miller 參數法............19
2.7.3 Dorn 參數法..................21
2.7.4 Ω 法..................22
第三章 潛變試驗設計與操作..................28
3.1 潛變試驗..................28
3.2 試驗材料及規格.................. 28
3.3 實驗裝置..................30
3.3.1 潛變試驗機..................30
3.3.2 加熱設備..................30
3.3.3 測量儀器..................32
3.3.4 記錄器..................33
3.4 金相組織觀察..................34
3.5 SEM 破斷面觀察 34
3.6 實驗條件..................35
3.7 實驗步驟..................36
第四章 結果與討論..................37
4.1 金相組織分析..................37
4.2 SEM 破斷面分析..................39
4.3 定溫下應力對潛變之影響..................42
4.4 定應力下溫度對潛變的影響..................45
4.5 應力指數..................48
4.6 活化能..................50
4.6.1 冪次定理..................50
4.6.2 Dorn 參數法..................53
4.7 Monkman-Grant 法..................55
4.8 Larson-Miller 參數法..................56
4.9 Ω 法..................60
4.9.1 應力與 Ω 值之影響..................63
4.9.2 應力對最小潛變速率之影響..................65
4.10 Larson-Miller 參數法與 Ω 法之壽命預測比較..................68
第五章 結論..................70
參考文獻..................72
參考文獻
【1】姚枚、陳鴻濱,金屬機械材料性能,全華科技圖書公司,台北,頁513-515,1996。
【2】Ray, A. K., “Remnant life assessment of service-exposed pendent superheater tubes,” Engineering Failure Analysis, Vol. 9, pp. 83–92
, 2002.
【3】Singh, R. and Singh, S. R., “Remaining creep life study of Cr–Mo–V main steam pipe lines,” International Journal of Pressure Vessels and Piping, Vol. 73, pp. 89-95, 1997.
【4】Sanderson. S. J., ASM International Conference on Ferritic Steels
for High Tempermature Applications, p. 85, 1981.
【5】Qin, Y., “Microstructure evolution of the cast martensitic steel G-X12CrMoWVNbN 10–1–1 during creep at 823 K,” Materials Science and Engineering A357, pp. 1–6, 2003.
【6】何光遠等,工程材料學,五南圖書出版公司,台北,頁3–71。
【7】Liu, Cheng., Liu, Ping., and Zhao, Zhenbo., and Northwood, Derek
O., “Room temperature creep of high strength steel,” Material and Design , Vol. 22, pp. 325–328 , 2001.
【8】Willis, M., McDonaugh-Smith, A., and Hales, R., “Prestrain effects
on creep ductility of a 316 stainless steel light forging,” International Journal of Pressure Vessels and Piping 76, pp. 55–359, 1999.
【9】郭晉全,鍋爐管材殘餘壽命評價之研究,碩士論文,逢甲大學,2000。
【10】Whittenberger, J. Daniel., Creep Stress-Rupture and Stress–
Relaxation testing , Mwtals Handbook, Mechanical Testing, AMS, Vol. 8, 1985.
【11】田中吉之助,金屬材料之高溫強度,頁11–19。
【12】劉松柏,成璟技術叢書,材料強度破壞學,頁108–110。
【13】Penny, R. K., and Marrioat, D.L., Design for Creep, pp.6–13, 148-149, 1995.
【14】G. E. Dieter ed., Mechanical Metallurgy, McGraw–Hill, 1988.
【15】Gittus, J.H. ed., Creep, Viscoelasticity and Creep–rupture in Solids, Elsevier, 1974.
【16】Gittus, J. H., “Development of a Theoretical Equation for Steady–
State Dislocation Creep and Comparison with Dara,” Acta metall.,
Vol. 22, p. 789, 1974.
【17】Weertman, J., “Dislocation Climb Theory of Steady-state Creep,” Trans. Amer. Soc. Metals, Vol. 61, p. 1968.
【18】Happer, J. and Dorn, J. E., “Viscous Creep of Aluminum Near its Melting Temperature,” Acta Metall., Vol. 5, p. 654 , 1979.
【19】Ginter, Timothy J., and Mohamed,Farghalli A., “Evidence for dynamic recrystallization during Harper–Dorn creep,” Materials Science and Engineering A322, pp. 148–152, 2002.
【20】Nabarro, F. R. N., “Report of a Conference on Strength of Solids,” Physiety, London, p. 75, 1948.
【21】Coble, R. L.,“A Model for Boundary Diffusion Controlled Creep in
Polycrystalline Materials,” J. Appl. Phys., Vol. 34, p. 1679, 1963.
【22】Raj, R., and Ashby, M. F., “On Grain Diffusion Controlled Creep in
Polycrystalline Materials Met.Trans., Vol. 2, p. 111, 1971.
【23】Frost, H. J., and Ashsy, M. F., Deformation-mechanism Maps, Pergamon, 1982.
【24】Ashby, M. F., “A First Report on Deformation-mechanism Maps,” Acta Metall., Vol. 20, pp. 887–897, 1972.
【25】Dorn, J. E., and Shepherd, L. A., “Proceedings symposium on effect of cyclic heating and stressing on metals at elevated temperature,”
ASTM Special. Tech. Publ., No. 165, 1954.
【26】Larson, F. R., and Miller, J., Trans., ASME, pp. 765–766, 1952.
【27】Swindeman, R. W., Maziasz P. J., and Brinkman C. R., “Aging Effects on the Creep–Rupture of 9Cr–1Mo–V Steel, ” presented at the Joint ASME Power Generation Conference, Florida, July 23–26, 2000.
【28】Natesan, K., Soppet, W. K., and Purohit, A., “Uniaxial creep behavior of V–4Cr–4Ti alloy,” Journal of Nuclear Materials 307–311, pp. 585–590, 2002.
【29】Lalitha, C., and Ghosh, R. N., “Clip: computer software for creep
life prediction of engineering materials,” Engineering Fracture Mechanics, Vol. 54, No. 1, pp. 71–73, 1996.
【30】Maruyama, K., Nonaka, I., Sawada, K., Sato, H., Koike, J. I., and Umaki, H., “Improvement of omega method for creep life prediction,” ISIJ International, Vol. 37, No. 4, pp. 419–23, 1997.
【31】Perager, M., “Development of the MPC omega method for life assessment in the creep range,” Journal of Pressure Vessel Technology, Vol. 117, No. 4, pp. 419–423, 1995.
【32】Girdwood, R. B., and Evans, R. W.,“Recovery of creep properties
of the Nickel-Base superalloy Nimonic 105,”Internation Journal of the Pressure and Vessels Piping 66, pp. 141–153, 1995.
【33】Spigarelli, S., and Quadrini, E., “Analysis of the creep behaviour of modified P91 (9Cr–1Mo–NbV) welds,” Materials and Design 23, pp.547–552, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top