跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張志誠
研究生(外文):Zhi-Cheng Chang
論文名稱:EDTA降解菌應用於含金屬-EDTA廢水處理研究
論文名稱(外文):Application of EDTA-degrading bacterium to Metal-EDTA on Wastewater Treatment
指導教授:方鴻源方鴻源引用關係
指導教授(外文):Hung-Yuan Fang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:109
中文關鍵詞:化學需氧量乙二胺四乙酸廢印刷電路板Burkhol cepacia YL-6
外文關鍵詞:EDTACODBurkhol cepacia YL-6PC Board
相關次數:
  • 被引用被引用:8
  • 點閱點閱:615
  • 評分評分:
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究YL-6應用於含 EDTA 廢水處理,以提昇其降解 EDTA 的能力,使用 YL-6 生物製劑,馴養出活性污泥,使其能應用於 PC Board 場中含 Cu-EDTA之工業廢水之生物處理系統,並有效降解系統中 EDTA 所造成高 COD 之問題。
於恆溫振盪培養箱試驗YL-6 製劑對EDTA 降解情形,結果顯示,Fe-EDTA, Cu-EDTA 去除率為94.8%及91.5%,空白組添加光源有產生自然光解現象,但降解情形非常緩慢,Fe-EDTA 降解率高於Cu-EDTA。以compound E 製成之YL-6製劑降解Fe-EDTA, Cu-EDTA試驗,Fe-EDTA, Cu-EDTA 去除率為98.58%及97.88%,比一般培養之YL-6,去除率及菌體濃度明顯提升,由此可知,由compound E培養有提升YL-6降解EDTA 之效能。
將PC Board廠之活性污泥分為實驗組及對照組,實驗組添加YL-6生物製劑及不添加之對照組,原廢水先經化學混凝去除重金屬,先以稀釋20倍之廢水,使活性污泥逐漸適應,再以10倍、5倍及1倍,最終以不稀釋之原廢水馴養。初期馴養,經化學混凝去除重金屬稀釋20倍之廢水馴養時,活性污泥微生物生長受抑制,直至馴養第8天,活性污泥逐漸達穩定狀態,Fe-EDTA可於2天完全降解,Cu-EDTA於2天時降解餘3 mg/L,於25天COD天降解至97 mg/L,去除率為92.9%,對照組COD去除率25.2%,於11天TOC去除率90.57%;再以稀釋10倍、5倍、1倍及原廢水馴養,最初階段微生物皆不易生長,不同稀釋倍數之廢水,仍可成功馴養活性污泥,由此可知以漸進式的馴養方法,可以馴養出適合PC Board場原廢水之活性污泥,並配合使用YL-6菌添加於活性污泥系統,可有效降解Fe-EDTA、Cu-EDTA及COD,但無法於短時間內使COD符合放流水標準。
EDTA (ethylenediaminetetraacetic acid), the target compound of this study from the effluent of secondary biotreatment units and waste liquid, can be biodegraded by special microorganisms. We also have successfully isolated a bacterial strain that
can degrade EDTA in our laboratory. This bacterium was identified Burkhol epacia YL-6. So this study focuses YL-6 applied to EDTA wastewater treatment, significantly promoted EDTA by using the YL-6 bioaugmentation agent to accumulation the activated sludge. So we try to apply the bacterium to the Cu-EDTA and wastewater in a PC board plant. Hope can solve higher COD problem in the
system from EDTA.
The experiment of EDTA degradation was performed on a shake flask with the addition of YL-6 bioaugmentation agent. The results showed that the degradation efficiency of Fe-EDTA and Cu-EDTA were 94.8% and 91.5%. The blank with light source can be degraded by light but very slowly, and the degradation efficiency of Fe-EDTA was higher than Cu-EDTA. The degradation test of Fe-EDTA and Cu-EDTA by addition the compound E as the bioaugmentation agent showed that the degradation efficiency were 98.58% and 97.88%, respectively. The degradation efficiency and biomass were significantly promoted by using the compound E as the
bioaugmentation agent.
The activated sludge and raw wastewater were taken from PC Board wastewater treatment plant. It was cultivated in batch pilot to simulate the degradation of metal-EDTA by the strain of YL-6. The activated sludge from PC Board plant was divided into two sets-experimental set with and contradistinctive set, without YL-6 bioaugmentation agent. In the experimental system of pilot plant, 2 L activated sludge was mixed with 2 L raw wastewater. In order to avoid the death of microorganism which cause by the raw wastewater, the raw wastewater will be pretreated by chemical coagulation to remove the heavy metals. The raw wastewater will be diluted (ratio 20:1) firstly for the adaptation of activated sludge. Then the dilution ration will be 10, 5, 1 and finally the raw wastewater for the accumulation of the activated sludge. At the primary stage of accumulation for the dilution ration (20:1), the growth of the microorganism was inhibited until the 8th days, then the activated sludge reached the steady state. After 2 days, Fe-EDTA can be degraded completely and the residual of Cu-EDTA was 3 mg/L. After 25 days, the residual of COD was 97 mg/L and the removal efficiency was 92.9%. For the contradistinctive set, the removal efficiency of COD was 25.2% and TOC was 90.57%. Similarly, for the dilution ration 10, 5, 1 and raw wastewater, at the beginning of accumulation, the growth was inhibited and increased, the removal efficiency of EDTA, COD and TOC were lower. From the results of the experiment, the step by step accumulation can be used to adapt the bioaugmentation agents YL-6 to the activated sludge system, it can enhance the degradation of Fe-EDTA and Cu-EDTA, but it can’t achieve the effluent standard of COD in shorter time.
目錄
摘要 I
目錄 III
圖目錄 VII
表目錄 IX
一、緒論 1
1.1 研究背景 1
1.2 研究目標 2
二、文獻回顧 3
2.1 EDTA 特性 3
2.2 EDTA 之水溶性及金屬置換能力 4
2.2.1 EDTA 之錯合反應 5
2.2.2 EDTA 錯合物之穩定性 5
2.2.3 EDTA 之毒性及危害 6
2.3 EDTA製成的方式 9
2.3.1 實驗室合成法 9
2.3.2 二段式工業生產法 9
2.3.3 一段式工業生產法 9
2.4 EDTA 的應用 9
2.4.1印刷電路板工廠的應用 11
2.4.2印染上的應用 11
2.4.3醫藥上之應用 11
2.4.4應用於金屬分離 12
2.5 EDTA 應用於環境上 12
2.5.1土壤復育之應用 12
2.5.2空氣污染物去除 13
2.6 EDTA 物化處理 13
2.6.1 光解法 13
2.6.2過氧化氫/紫外光程序法 14
2.7 EDTA之生物處理 14
2.7.1 EDTA分解菌 15
2.7.2 EDTA之降解途徑研究與中間產物 15
2.8 EDTA應用於實廠之生物處理 19
三、研究方法及設備材料 20
3.1 研究流程 20
3.2 實驗藥品 21
3.3 實驗設備 22
3.4 實驗方法 23
3.4.1 菌株來源 23
3.4.2 培養基成分 23
3.4.3 活性污泥系統 24
3.4.4 SBR實驗設備 24
3.4.5 連續式處理試驗設備 25
3.5 分析方法 26
3.6 PC Board 廠廢水之前處理 29
3.7 YL-6對 Fe-EDTA或Cu-EDTA 850 mg/L降解評估 29
3.7.1 YL-6 對Fe-EDTA或Cu-EDTA 之降解 29
3.7.2 YL-6 對金屬-EDTA 之降解 30
3.7.3 YL-6 對PC Board 廠原廢水-EDTA 之降解 30
3.7.4 YL-6 對EDTA 降解效能提昇 30
3.8 活性污泥對EDTA之批式處理 30
3.8.1 活性污泥添加 YL-6 對EDTA之批式降解 30
3.8.2 活性污泥添加compound E培養YL-6 對EDTA之降解 31
3.9活性污泥添加YL-6之EDTA連續式處理 31
3.9.1活性污泥添加YL-6之EDTA連續式處理 31
3.9.2活性污泥添加compound E培養YL-6之EDTA連續式處理 31
四、結果與討論 32
4.1 PC Board 廠廢水之分析 32
4.1.1 廢水之性質分析 33
4.1.2 廢水經混凝前處理之改變 33
4.2 EDTA 濃度與TOC及COD 測定之關係 36
4.3 YL-6 對Fe-EDTA, Cu-EDTA 之降解效能 39
4.3.1 YL-6 對Fe-EDTA 之降解 39
4.3.2 YL-6 對Cu-EDTA 之降解 40
4.3.3 YL-6 對Fe-EDTA, Cu-EDTA 之降解 41
4.3.4 YL-6 對PC Board 場廢水 EDTA 之降解 42
4.4 YL-6 對 EDTA 降解效能提昇 43
4.4.1 以compound E 培養之YL-6 對Fe-EDTA 降解 43
4.4.2 以compound E 培養之YL-6 對Cu-EDTA 降解 44
4.4.3 以compound E 培養之YL-6之製劑對Fe-EDTA, Cu-EDTA 降解 45
4.4.4 compound E 培養之YL-6 對PC Board 廠原廢水EDTA降解 46
4.5 小型活性污泥之生物處理模場 47
4.5.1 添加廢水馴養活性污泥之批式試驗 49
4.5.2 YL-6對稀釋20倍之廢水降解試驗 50
4.5.3 YL-6對稀釋10倍之廢水降解 51
4.5.4 YL-6對稀釋5倍之廢水降解 53
4.5.5 YL-6對稀釋1倍之廢水降解 55
4.5.6 YL-6對原廢水之降解 56
4.6 活性污泥添加YL-6 製劑之批式試驗 59
五、結論與建議 60
5.1 結論 60
5.2 建議 63
參考文獻 64


圖目錄
圖2.1 EDTA化學結構圖 3
圖2.2 Metal-EDTA螯合物化學立體結構 3
圖2.5 DSM9103降解EDTA的途徑 16
圖2.6 DSM9103與DSM6780代謝EDTA之途徑 18
圖3.1 實驗流程 20
圖3.2 SBR 反應槽圖 25
圖3.3 連續式實驗設備圖 26
圖3.4 菌體濃度測定流程 28
圖4.1 Fe-EDTA濃度與TOC及COD濃度之關係 37
圖4.2 Cu-EDTA 濃度與TOC及COD濃度之關係 37
圖4.3 PC Board廠廢水EDTA濃度與TOC及COD濃度之關係 38
圖4.4 YL-6菌對Fe-EDTA之降解情形 39
圖4.5 YL-6菌對Cu-EDTA之降解情形 40
圖4.6 YL-6菌在Fe-EDTA及Cu-EDTA中之降解情形 41
圖4.7 YL-6菌對PC Board廠廢水EDTA之降解情形 42
圖4.8 compound E 培養之YL-6 於Fe-EDTA 之降解情形 43
圖4.9 compound E 培養之YL-6 對Cu-EDTA 之降解情形 44
圖4.10 compound E 培養之YL-6 對Fe-EDTA, Cu-EDTA 之降解情形 45
圖4.11 compound E 培養之YL-6 對PC Board 原廢水 EDTA 降解情形 46
圖4.12 桃園某印刷電路板廠之廢水處理流程 48
圖4.13 活性污泥添加YL-6對稀釋20倍之廢水中EDTA降解情形 50
圖4.14 活性污泥添加YL-6對稀釋20倍之廢水中COD及TOC降解情形 51
圖4.15 活性污泥添加YL-6對稀釋10倍廢水之EDTA降解情形 52
圖4.16 活性污泥添加YL-6對稀釋10倍廢水之COD及TOC降解情形 52
圖4.17 活性污泥添加YL-6對稀釋5倍廢水之EDTA降解情形 53
圖4.18 活性污泥添加YL-6對稀釋5倍廢水之COD及TOC降解情形 54
圖4.19 活性污泥添加YL-6對稀釋1倍廢水之EDTA降解情形 55
圖4.20 活性污泥添加YL-6對稀釋1倍廢水之COD及TOC降解情形 56
圖4.21 活性污泥添加YL-6對原廢水之EDTA降解情形 57
圖4.22 活性污泥添加YL-6對原廢水之COD及TOC降解情形 58


表目錄

表2.1 EDTA 及其鈉鹽於水中溶解度與溫度之關係 4
表2.2 重金屬於不同 pH 下與 EDTA 的螯合能力 5
表2.3 EDTA 錯合物的穩定常數 6
表2.4 EDTA.2 Na 及2 Ca 之生物半致死劑量 6
表2.5 EDTA 與重金屬之 EC50值 8
表2.6 EDTA 於各行業中之應用概況 10
表4.1 PC Board 廠之廢水特性 32

表4.2 pH 5及不同氯化鐵濃度Jar-test後之重金屬殘留濃度 33
表4.3 pH 6及不同氯化鐵濃度Jar-test後之重金屬殘留濃度 34
表4.4 pH 7及不同氯化鐵濃度Jar-test後之重金屬殘留濃度 34
表4.5 pH 8及不同氯化鐵濃度Jar-test後之重金屬殘留濃度 35
表4.6 pH 9及不同氯化鐵濃度Jar-test後之重金屬殘留濃度 35
1.陳思霖,2000, EDTA 生物分解之研究,國立雲林科技大學,碩士論文。
2.陳世卿,1994,化學混凝沉澱處理含銅鎳廢水之探討,國立中興大學,碩士論文。
3.方鴻源,2000, EDTA 之工業應用與降解介紹, Bioindustry, Vol. 11, No. 2.
4.方鴻源等,1998,"煉油廢水處理生物製劑生產研究",第十三屆廢水處理技術研討會論文集,頁6-1~6-8。
5.王斌豫,2002, Burkhol cepacia YL-6 EDTA 降解效能提升研究,國立雲林科技大學,碩士論文。
6.李國旭,2003, EDTA 降解菌應用於含 EDTA 工業廢水處理研究,國立雲林科技大學,碩士論文。
7.中國國家標準 CNS,1996,"化學試藥(四乙酸乙二胺)" ,總號:1718,類號: K 7218,頁 543~544。
8.林淑萍,1993,以 Fe-EDTA 代替過氧化酵素作為催化劑之開發,行政院國家科學委員會。
9.林君翰,2002,外加碳源對 EDTA 生物分解之影響,國立中興大學,碩士論文。
10.柴宏琪,1997,乳酸鏈球菌素、螯合劑、有機酸、褐藻膠及其混合系統對絞牛肉中大腸桿菌血清型O157-H7生長之影響,國立中興大學,碩士論文。
11.楊俊賢,1984,香蕉發酵飲料之改善,國立台灣大學,碩士論文。
12.薩支高、溫一倉,1998,"以 EDTA 萃取配合物理序列沉降法復育受鎘及鉛污染土壤之初步研究",中國農業化學會誌,36卷,6期,頁565~575。
13.顧洋、王麗香,1995,"以紫外光/過氧化氫程序處理 EDTA 水溶液反應行為之研究",第二十屆廢水處理技術研討會論文集,頁6-1~6-8。
14.衛生法規,第七類品質改良用、釀造用及食品製造用劑。
15.蔣中立,2000,"不同萃取劑對焚化飛灰重金屬萃取效果之探討",第十五屆廢棄物處理技術研討會論文集,頁7-24~7-28。
16.經濟部工業局工業污染防治技術服務團,廢水處理廠操作管理,工業污染防治技術手冊之二十五。
17.經濟部工業局工業污染防治技術服務團,活性污泥法新技術,工業污染防治技術手冊之三十二。
18.歐陽喬暉,1997,下水道工程學(增訂版),局版台業字第0678號,長松出版社,茂榮圖書有限公司。
19. Aidar D. Satroutdinov et al., 2000, “Degradation of metal-EDTA complexes by resting cells of the bacterial strain DSM 9103”, Environ. Sci. Technol., 34, pp. 1715~1720.
20. Allen P. Davids and Jae Kyu Yang, 2000, “Photocatalyic oxidation of Cu (2)-EDTA with illuminated TiO2-Kinetics and Mechanism”.
21. Allen P. Davids and Muhammad S. Vohra, 2000, “TiO2-assisted photocatalysis of lead-EDTA”, Water Research, Vol. 34, No. 3, pp. 952~964.
22. Anthony V. Palumbo et al., 1994, “The effect of media composition on EDTA degradation by Agrobacterium sp.” , Applied Biochemistry and Biotechnology, Vol. 45/46, pp. 811~822.
23. Brend Norteman, 1992, “Total degradation of EDTA by mixed cultures and a bacterial isolate”, Applied and Environmental Micro-biology, pp. 671~676, Feb.
24. Brend Norteman et al., 1998, “Metabolism of EDTA and its metal chelates by whole cells and cell-free extracts of strain BNC1”, Applied Microbiol Biotechnol, 49, pp. 194~201.
25. C. G. van Ginkel et al., 1997, “Biological removal of EDTA in conventional activated-sludge plants operated under alkaline conditions”, Bioresource Technology, 59, pp. 151~155.
26. C. G. van Ginkel et al., 1999, “Biodegradation of EDTA in pulp and paper mill effluents by activated sludge”, Water Sci. Tech., Vol. 40, No. 11~12, pp. 259~265.
27. C. P. Huang et al., 2000, “Recovery of EDTA from power boiler chemical cleaning wastewater”, Journal of Environmental Engineering, pp. 919~924, October.
28. Doborah L. Muggli and Paul J. Harrison, 1996, “EDTA suppresses the growth of oceanic phytoplankton from the Northeast Subarctic Pacific”, Journal of Experimental Marine Biology and Ecology, 205, pp. 221~227.
29. Franz Gunter Kari and Walter Giger, 1995, “Modelong the photo-chemical degradation of ethylenediamientetraacetate in the River Glatt”, Environ. Sci. Technol, 29, pp. 2814~2827.
30. Franz Gunter Kari and Walter Giger, 1996, “Speciation and fate of EDTA in municipal wastewater treatment”, Water Research, Vol. 30, No. 1, pp. 122~134.
31. Hansruedi Sigerist et al., 1990, “Behavior of NTA and EDTA in biological wastewater treatment”, Water Research, Vol. 24, No. 6, pp. 733~742.
32. Heimbach et al., 2000, “Safety assessment of Iron EDTA 〔(Sodium Iron (Fe3+) Ethylenediaminetetraacetic acid): summary of Toxicological, fortification and exposure data”〕, Food and Chemical Toxicology, 38, pp. 99~111.
33. J. B. Rodriguez et al., 1999, “Chemical degradation of EDTA and DTPA in a totally chlorine free (TCF) effluent”, Water Sci. and Tech, Vol. 40, No. 11-12, pp. 267~272.
34. Jaana Sorvari and Mika Sillanpaa, 1996, “Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna”, Chemosphere, Vol. 33, No. 6, pp. 1119~1127.
35. Janne Virtapohja and Raimo Alen, 1999, “Behavior of EDTA in marine microcosms”, Chemosphere, Vol. 38, No. 1, pp. 143~154.
36. Jaakko Ramo and Mika Sillanpaa, 2001, “Degradtaion of EDTA by hydrogen peroxide in alkaline conditions”, Journal of Cleaner Production, 9, pp. 191~195.
37. John J. Lauff et al., 1990, “Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp.”, Applied and Enviro-nmental Microbiology, pp. 3346~3353, Nov.
38. Kuang-Chung Yu et al., 1996, “Remobilization of Zinc from Ell-Ren river sediment fractions affected by EDTA , DTPA and EGTA”, Water Sci. Tech, Vol. 34, No. 7-8, pp. 125~132.
39. K. Taeger et al., 1998, “Microbial degradation of EDTA in an industrial wastewater treatment plant”, Water Research, Vol. 32, No. 9, pp. 2843~2845.
40. L. L. Barton et al., 1999, “Treatment of waste containing EDTA by chemical oxidation”, Water Management, 19, pp. 477~482.
41. Luying Xun et al., 1998, “Purification and characterization of EDTA monooxygenase from the EDTA-degradation bacterium BNC1”, Journal of Bacteriology, pp. 3823~3827, Aug.
42. M. L. Hinck et al., 1997, “Resistance of EDTA and DTPA to aerobic biodegradation”, Water Research, Vol. 35, No. 2, pp. 35~31.
43. Metcalf and Eddy, 2003, Wastewater Engineering Treatment and Reuse, 4th edition, McGraw-Hill Higher companies, USA.
44. Mika Sillanpaa et al., 1997, “Distribution and transportation of EDTA and DTPA in water and sediment”, Chemosphere, Vol. 35, No. 12, pp. 2797~2805.
45.O’Melia, C. R., 1985, “Particle, Pretreatment and Performance in Water Filtration” J. Envir, Engng, Div. Am. Soc. Civ. Engers., 111.
46.Reynolds and Richards, 1996, Unit Operations and Processes in Environmental Enginerring, 2 editions, PWS PUBLISHING COMPANY, USA.
47.Ruey-Shin Juang et al., 2000, “Metal recovery and EDTA recycling from simulated washing effluents of metal contaminated soils”, Water Research, Vol. 34, No. 15, pp. 3795~3803.
48.Ruey A. P. Thomas et al., 1998, “Biodegradation of metal-EDTA complexes by an enriched microbial population”, Applied and Environmental Microbiology, pp. 1319~1322, April.
49.Thomas Egli et al., 1997, “Identified and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degradation bacterial strain DSM 9103”, Journal of Bacteriology, pp. 6937~6943, Nov.
50.Thomas Egli and Margarete Witschel, 1998, “Purification and characterization of a lyase from the EDTA-degradation bacterial strain DSM 9103 that catalyzes the splitting of 〔S, S〕- ethylenediamine-disuccinate, a structural isomer of EDTA”, Biodegradation, 8, pp. 419~428.
51.Thomas Egli et al., 2001, “Biodegradation of metal-complexing amino-polycarboxylic acids”, Journal of Bioscience and Bioengineering, Vol. 92, No. 2, pp. 89~91.
52.Thomas J. S., 1978, “Treatment Technology to meet the Interim Primary Drinking Water Regulations for Inorganics”, J. AWWA.
53.Uanbin Xue et al., 1995, “Speciation of EDTA in natural waters: exchange kinetics of Fe-EDTA in river water”, Environ. Sci. Technol, 29, pp. 59~68.
54.Wang Cheng et al., 1997, “Separation of Cobalt and Nickel by emulsion liquid membrane with the use of EDTA as masking reagent”, Journal of Membrane Science, 135, pp. 173~177.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top