跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝文凱
研究生(外文):Wenkai Xie
論文名稱:界面活性劑對油污染土壤現地復育-生物通氣法之影響
論文名稱(外文):Effect of Bioventing Remediatim by surfactant on in-situ oil-contaminated soil
指導教授:方鴻源方鴻源引用關係
指導教授(外文):Hung-Yuan Fang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:59
中文關鍵詞:界面活性劑通氣法生物復育油污染土壤
外文關鍵詞:air-ventingsurfactantBioremediationoil-contaminated soil
相關次數:
  • 被引用被引用:13
  • 點閱點閱:415
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:0
本研究以台灣本土環境篩選出之機油、煤油、柴油、石蠟、酚、苯、甲苯、二甲苯等分解菌株,組合不同油污土壤之最佳混合菌株配合空氣注入法(air venting)進行整治技術研究,添加界面活性劑評估界面活性劑對油污染土壤生物通氣法現地復育之影響,最後進行模場試驗評估該整治技術之可行性。
試驗土壤採樣於雲林科技大學廢土場,其含水率為23%,比重為2.50,孔隙率為22.90%,及pH值6.57,依ASTM D2487-85粒徑分析土壤分類方法判定採集的土壤為砂質壤土。
機油降解試驗五週菌體生長狀況如下:室溫開放空間中未污染土壤五週之平均菌量為2.44×105 CFU/g soil,機油污染土壤中微生物降解機油五週最大菌量為1.60×106CFU/g soil有微量增長,添加生物製劑組五週最大菌量為4.30×108CFU/g soil,而再添加界面活性劑組五週最大菌量為4.39×108CFU/g soil﹔恆溫密閉試驗第五週菌量可增長到2.54×109CFU/g soil;在兩公斤土壤模場試驗中第五週菌量為6.05×108CFU/g soil。
柴油降解試驗五週菌體生長狀況如下:室溫開放空間中未污染土壤五週之平均菌量為1.13×106 CFU/g soil,柴油污染土壤中微生物降解柴油五週最大菌量為2.30×106 CFU/g soil有微量增長,添加生物製劑組五週最大菌量為4.30×108 CFU/g soil,而再添加界面活性劑組五週最大菌量為4.54×108 CFU/g soil﹔恆溫密閉試驗第五週菌量可增長到4.05×1011CFU/g soil﹔在兩公斤土壤模場試驗中第五週菌量為6.70×108CFU/g soil。
界面活性劑添加對於機油污染復育成效,室溫開放空間中未添加界面活性劑組復育成效僅為61.54%,添加界面活性劑組除tween 60僅64.23%以外,其他tween 20﹔40與80的界面活性劑添加組去除效率提昇為78.08%;77.69%與77.69%,皆有明顯成效。tween 20﹔40與80以0.05%(w.t)添加量的油污去除效率較其他添加比例佳,以tween 40之去除效率最佳達84.62%﹔恆溫密閉試驗第四週機油降解效率即達76.95%,第五週亦達83.85%;在兩公斤土壤模場試驗中五週之降解效率僅達70.96%。
界面活性劑添加對於柴油污染復育成效,室溫開放空間中未添加界面活性劑組成效僅74.28%,添加界面活性劑組除tween 60去除效率僅73.57%以外,tween 20﹔40與80去除效率分別為78.57%;85%與78.92%,皆稍有成效。若再加以考量界面活性劑添加量來判別其成效時顯示,tween 40添加量0.05%(w.t)組去除效率最佳達87.14%﹔恆溫密閉試驗中第五週柴油降解效率即達90.85%;在兩公斤土壤模場試驗中五週之降解效率達75.71%。
反應機制分析部分,機油降解試驗與柴油降解試驗分析解果顯示,柴油模場試驗柴油降解呈現零階反應,機、柴油恆溫降解試驗與機油模場試驗之油脂降解皆為一階反應。
This study aim to apply the various petroleum degradating bacteria that conducted via bioaugmention , such as diesel oil、kerosene、motor oil、phenol、paraffin、toluene、xylene and benzene utilizer, into the oil-contaminated soil, we try to use bioremedy technology with air venting and add surfactant to assess the effect of Bioventing Remediation on in-situ oil-contaminated soil. Finally use this optimal condition in a Pilot-Scale test to evaluate the practicability of this method.
Test the soil were sampled from abolish the soil field in the National Yunlin University of Science & Technology, its moisture content is 23%, density is 2.50, the porosity is 22.90%, and pH is 6.57. The ASTM D2487-85 method was used to determine the properties of the soils. The soil is belong to sandy loam.
In five weeks of motor oil degrading experiment of viable counts condition: In open space, on the uncontaminated of motor oil soil average viable counts were 2.44×105 CFU/g soil. On the motor oil-contaminated soil maximum viable counts were 1.60×106CFU/g soil. After microbial biofungicide addition soil maximum viable counts were 4.30×108CFU/g soil. For surfactant addition again, soil maximum viable counts were 4.39×108CFU/g soil. On fifth week of isothermal of degrading experiment viable counts were 6.05×108CFU/g soil. On fifth week of pilot of degrading experiment viable counts were 2.54×109CFU/g soil.
In five weeks of diesel oil degrading experiment of viable counts condition: In open space, on the uncontaminated of diesel oil soil average viable counts were 1.13×106 CFU/g soil . On the diesel oil-contaminated soil maximum viable counts were2.30×106 CFU/g soil. After microbial biofungicide addition soil maximum viable counts were 4.30×108CFU/g soil. For surfactant addition again, soil maximum viable counts were 4.54×108 CFU/g soil. On fifth week of isothermal of degrading experiment viable counts were 4.05×1011CFU/g soil. On fifth week of pilot of degrading experiment viable counts were 6.70×108CFU/g soil.
Effect of motor oil degrading experiment by surfactant: In open space, the surfactant non-addition degradation efficiency of the TPH was only 61.54%. Surfactant addition system: The degradation efficiency of the TPH except for addition tween 60 only 64.23%, addition tween 20, 40 and 80 oil degrading efficiency to heave 78.08%;77.69% and 77.69%. Effect of degradation efficiency of the TPH by addition ratio, all of the tween 20, 40 and 80 addition 0.05%(wt) of soil ratio had better efficiency, particularly tween 40 had best efficiency of the TPH to 84.62%. In isothermal of degrading experiment the fourth week degradation efficiency of the TPH were 76.95%, and on fifth week were 83.85%. On Pilot of degrading experiment were 70.96%.
Effect of diesel oil degrading experiment by surfactant: In open space, the surfactant non-addition degradation efficiency of the TPH was only 74.28%. Surfactant addition system: The degradation efficiency of the TPH except for addition tween 60 only 73.57%, addition tween 20, 40 and 80 oil degrading efficiency to heave 78.57%;85% and 78.92%. Effect of degradation efficiency of the TPH by addition ratio, tween 40 additions 0.05%(wt) of soil ratio had best efficiency of the TPH to 87.14%. In isothermal of degrading experiment the fifth week degradation efficiency of the TPH were 90.85%. On Pilot of degrading experiment were 75.71%.
Apply the remediation data of degrading experiment to calculate the reaction order. The pilot of diesel degrading experiment conditions were zero-order reaction, pilot of diesel oil degrading experiment, isothermal of degrading motor oil and diesel oil experiment conditions were first-order reaction.
目錄
摘要 I
目錄 III
表目錄 VII
圖目錄 VIII
一、緒 論 1
1.1 研究緣起 1
1.2研究目的 2
二、文獻回顧 3
2.1土壤特性 3
2.1.1土壤物理性質 3
2.1.2土壤化學性質 4
2.1.3土壤微生物 4
2.2石油特性 5
2.2.1石油組成 5
2.2.2油品之基本理化性質 6
2.2.3石油系列物質對環境的影響及其宿命 7
2.2.3油品洩漏存在土壤中的型態 8
2.3土壤污染場址整治技術 9
2.3.1 物理/化學整治處理技術 11
2..3.2生物復育技術 17
2.4土壤地下水國內外石油污染復育實例 18
2.4.1國外案例 18
2.4.2國內案例 20
2.5生物通氣法(bioventing) 21
2.5.1生物通氣法的發展與原理 21
2.5.2生物通氣法的影響因子 22
2.6界面活性劑特性 23
2.6.1界面活性劑種類 24
2.6.2界面活性劑對微生物降解碳氫化合物之影響 25
三、材料與實驗方法 27
3.1研究方法及步驟 27
3.2實驗材料及方法 28
3.2.1實驗藥品 28
3.2.2儀器設備 28
3.3 土壤樣品物性及化性分析 29
3.3.1土壤物性分析: 29
3.3.2土壤化性分析: 29
3.4石油系物質分解菌 31
3.4.1生物製劑之活化 32
3.4.2菌體量測定 32
3.5受油污染土壤之生物復育 34
3.5.1界面活性劑添加復育試驗 34
3.5.2 生物復育效率分析 35
3.5.3恆溫復育試驗 37
3.5.4模場試驗 37
第四章 結果與討論 39
4.1試驗用土壤之基本特性 39
4.1.1土壤之物理性質 39
4.1.2土壤之化學性質 39
4.2土壤機油污染之生物復育 39
4.2.1界面活性劑添加試驗 39
4.2.2恆溫復育試驗 43
4.2.3模場試驗 44
4.3土壤柴油污染之生物復育 46
4.3.1界面活性劑添加復育試驗 46
4.3.2恆溫復育試驗 49
4.3.3模場試驗 50
4.4各復育條件污染物濃度衰減速率及反應機制分析 51
4.4.1 機油降解試驗 51
4.4.2 柴油降解試驗 52
第五章 結論與建議 54
5.1結論 54
5.2建議 56
參考文獻 57
1.Almar Otten et.al.,1997,”In Situ Soil Remediation”KLUWER ACADEMIC PUBLISHER, pp.34-38.
2.Aronstein B. N., Calvillo Y.M. and Alexander, 1991, Effects of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol.25: 1728-1731
3.Colwell, R. R. and J. D. Walker., 1977, 〝Ecological aspects of microbial degradation of petroleum in the marine environment.〞, Crit. Rev. Microbiol. Vol.5, pp.423-445.
4.EPA, 1999,Remediation Technologies Screening Matrix and Reference Guide,Ver.3.0, 600pp., Clu-In web site.
5.Evan K. Nyer et.al., 1996, “In Situ Treatment Technology”,LEWIS PUBLISHER, pp.61-97.
6.Guerin William F. and Jones E. Galen, 1988, Mineralization of phenanthrene by a Mycobacterium sp. Applied and environmental microbiology. 54(4): 937-944
7.Helenius A. and Simons K., 1975, Solubilization of membranes by detergents. BioChem. Biophys. Acta. 415:29-79.
8.Hinchee, R., ed., 1994, Air Sparging for Site Remediation. Boca Raton, FL: Lewis Publishers.
9.Hinchee, R., ed., 1994, Air Sparging for Site Remediation. Boca Raton, FL: Lewis Publishers.
10.Holt M. S., Mitchel G. C. and Watkinson R. J., 1992, The environmental chemistry, fate and effects of nonionic surfactants. In:Hutzinger O.(ed.) The handbook of environmental chemistry. Volume3. part F pp.91-98 and 119-139.
11.Kim, M., M. D. Annable, and P. C. RAO§, 2001, Gaseous transport of volatile organic chemical in unsaturated porous media:effect of water-partitioning and air-water interfacial adsorption, Environ. Sci. Technol., 35:4457-4462.
12.Kirtland, B. C., and C. M. Aelion, 2000, Petroleum mass removal from low permeability sediment using air sparging and soil vapor extraction:impact of continuous or pulsed operation, Journal of Contaminant Hydrology, 41:367-383.
13.Laha S, Luthy R. 1991. Inhibition of phenanthrene mineralization by nonionic surfactants in soil water systems: Environ Sci Technol 25:1920–1930.
14.Laha S, Luthy R. 1992. Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil water systems: Biotechnology and Bioengineering 40:1367–1380.
15.Leahy, J. G. and R. R. Colwell, 1990, “Microbial degradation hydrocarbons in the environment”, Microbiological Reviews, Vol. 54, pp. 305-315.
16.Litchfield, C. D., 1991, Practices, potential, and pitfalls in the application of biotechnology to environmental problems. In Environmental Biotechnology for Waste Treatment, ed. G. Sayler et al., pp. 147-157, New York: Plenum Press.
17.Mackay, D., and McAuliff C.D., Fate of hydrocarbons discharged at sea, Oil and Chemical Pollution, Vol.5, p.1~20, 1988.
18.Menzie, C. A.; Santodonato, 1992,Environ. Sci. Technol. 1278.
19.Miller RM and R. Bartha. (1989) Evidence of liposome encapsulation for transport –limited microbial metabolism of soild alkanes. Appl. Env. Microbiol.55: 269-274
20.Perry R.H.,D.Green,1984,”Perry’s Chemical Engineers’ Handbook,” Internation Edition,McGraw-Hill International Book Company.
21.Pritchard, P. H., Mueller, J. G., Rogers, J. C., Kremer, F. V. and Glaser, J. A., 1992, 〝Oil spill bioremediation: experience, lessons and result from the Exxon Valdez oil spill in Alaska.〞, Biodegradation, Vol: 3, pp. 315-335.
22.Schweizer, J. W., 1996, The Benefits of Bioventing, Pollution Engineering, August:44-45.
23.Seagren, E. A., B. E. Rittmann, and A. J. Valocchic, 2002, Bioenhancement of NAPL pool dissolution:experimental evaluation, Journal of contaminant Hydrology, 55:57-85.
24.Shcherbakova, Victoria A.; Laurinavichius, Kestutis S.; Akimenko, Vasily K., 1999, Toxic effect of surfactants and probable products of their biodegradation on methanogenesis in an anaerobic microbial community. Chemosphere 39: 11 1861-1870
25.Sims, J. L., R.C. Sims, R. L. Zollinger, and S. G. Huling., 1999, Prepared bed reactors. pp.559-591. In D. C. Adriano et al. (ed.) Bioremediation of contaminated soils. Agron. Monogr. Vol.37, ASA, CSSA, and SSSA, Madison, WI.
26.Tiehm A., 1994, Degradation of polycyclicaromatic carbons in the present of synthetic surfactants. Appl. Environ. Microbiol. 60:258-263.
27.Wilson, J. T., C. G. Enfield, W. J. Dunlap., R. L. Cosby., D. A. Foster, and L. B. Baskin, Transport and Fate of Selected Organic Pollutants in a Sandy Soil, J. Environ. Qual., Vol.10: 4, pp. 501-506, 1981.
28.Yeh D. H., Pannell K. D. and Pavlostathis S. G., 1998, Toxicity and Biodegradation screening of nonionic surfactants using sediment-derived methanogenac concortia. Wat. Sci. Tech. 38(7): 55-62
29.王一雄、陳尊賢、李達源,1993,土壤污染學,國立空中大學
30.布拉哥號油輪污油處理報告,1984,中國石油股份有限公司台灣營業總處。
31.何信恩,「利用熱蒸氣注入/真空萃取技術現地整治受柴油污染土壤之最佳操作條件研究」,國立中山大學環境工程研究所,碩士論文,中華民國八十八年八月,1999。
32.吳奉銘、方鴻源,2001,石油系列物質分解菌擴大培養與應用,雲林科技大學環境與安全工程所碩士論文。
33.李仕明,石化污染土壤之生物復育影響因子研究,逢甲大學土木及水利工程研究所碩士論文,1999。
34.車道明,2002,油品污染土壤及地下水之復育技術,土壤及地下水污染調查與復育技術研討會論文集。
35.陳琇瑜、李文權。1994。實用生物技術。藝軒圖書出版社。臺北。
36.陶正綱,油品污染土壤及地下水之調查與整治案例介紹,地工技術,第45期,pp.93~ 107,1994
37.楊金鐘、陳泰成, 1995, "利用螯合劑清洗人工合成重金屬污染土壤之效果初步探討," 第九屆環境分析化學研討會論文集, 第464-474頁,5月4-6日, 台中市。
38.經濟部能源委員會,http://www.moea.gov.tw/,2004
39.葉琮裕,2002,環保訓練園地,環境保護人園訓練所。
40.趙映琇、方鴻源,2002,石油分解微生物利用於土壤油污染之生物復育,雲林科技大學環境與安全工程所碩士論文。
41.歐靜枝,1990,乳化溶化技術實務,復文出版社
42.環保署,http://www.epa.gov.tw/,地下水潛在污染源調查計劃,2002
43.環署檢字第46418號公告環境微生物檢測方法之水中總菌落數檢測-塗抹法NIEA E203.52B
44.蔡威呈、方鴻源,2003,以本土菌運用生物通氣法於現地復育油污染土壤之研究,雲林科技大學環境與安全工程所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top