跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 00:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏銘瑤
研究生(外文):Ming-Yao Yen
論文名稱:自組裝薄膜在電鍍銅填充印刷電路板微米盲孔上的研究與應用
論文名稱(外文):Studies and Application of Self-Assembled Monolayers on Microvia Filling of PCB by Copper Plating
指導教授:竇維平
指導教授(外文):Wei-Ping Dow
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:133
中文關鍵詞:自組裝薄膜電鍍銅印刷電路板
外文關鍵詞:SAMsSelf-Assembled MonolayersCopper PlatingPCB
相關次數:
  • 被引用被引用:7
  • 點閱點閱:570
  • 評分評分:
  • 下載下載:160
  • 收藏至我的研究室書目清單書目收藏:0
由於近年來電子產品朝向輕、薄、多功能複雜化的發展,積體電路元件的接點距離隨之縮小,信號傳送的速度則相對提高,相對需要高密度線路佈置,使得電路板朝向多層化印刷電路板,跟隨而來是線路與導孔的金屬化之問題。要如何將這此微米線路與導孔金屬化不會產生鍍層空洞及鬆散的金屬結構等等信賴度上的問題,是目前研究上的重要課題。
本論文主要研究目的乃利用所謂的自組裝薄膜技術,在以銅、黃金為晶種層的印刷電路板上形成SPS(Bis(3-Sufopropy) Disulfide,(NaSO3(CH2)3S)2)的SAMs,進行電鍍填孔,銅板在預浸2.82×10-5~1.12×10-4 M SPS可得到最好的填孔能力,在黃金板上預浸8.46×10-7~1.12×10-3M SPS可以得到最好的填孔能力。並利用具有不同末端官能基HS-(CH2)3-SO3-、HS-(CH2)2-COOH以及HS-(CH2)3-OH的硫醇分子在銅板上形成SAMs進行電鍍填孔,結果發現只有末端官能基為-SO3-才有填孔的能力。
吾人使用計時電位分析法及線性掃描伏安法,對SAMs進行的電化學行為之研究,研究結果發現黃金電極上的SPS SAMs導致銅的沈積以3D方式成長,而在銅電極上則是以2D成長方式;當硫醇末端官能基為-SO3-(MPS)會與氯離子產生協合效應,造成銅沈積於SAMs之下是屬於Buried layer沈積方式,末端官能基為-COOH(MPA)、-OH(MPE)會與氯離子產生交互作用而造成沈積於SAMs之上,屬於On top沈積方式。
經由本文研究結果,可進一步了解加速劑硫醇分子對於銅沈積的反應機構,可提供後人一些研究的思考方向與建言,期望藉此能將SAMs應用在加速劑的分析控制及填孔電鍍上。
Recently, electronics products become lighter, thinner, shorter, multi-functional and complicated. The distance of contact between the integrated circuit devices is shorter and shorted and the speed of signal transmission is required faster and faster, relatively, high density pattern must be designed to meet these requirements. As a result, multilayer printed circuit boards (PCBs) with microvia metallization become the main trend in fabrication. A topic how to metallize the conducting wires and microvias without void and loose structure in copper deposit becomes a major research.
The major topic of this thesis is to employ Self-Assembled Monolayers (SAMs) technology formed on copper and gold seed layer of PCB to achieve copper fill in the microvias. From the experiments results, the optimal pretreatment concentration of SPS (i.e., Bis(3-Sufopropy) Disulfide, (NaSO3(CH2)3S)2) for microvia fill is from 2.82×10-5 to 1.12×10-4 M on copper seed layer and from 8.46×10-7 to 1.12×10-3 M on gold seed layer, respectively. Besides, we employ different end groups, such as HS-(CH2)3-SO3–, HS-(CH2)2-COOH, and HS-(CH2)3-OH to form SAMs on copper seed layer to prove that only the -SO3– end group exhibits filling capability.
According to the analyses of chronopotentimetry and linear sweep voltammetry, we find that the SPS-SAMs formed on the gold seed layer results in copper deposition belonging to a mode of three-dimension growth, while, on the copper seed layer, it belongs to a mode of two-dimension growth. The -SO3– end group interacts with chloride ion to result in a so-called “buried layer” deposition mode. On the other hand, the end groups, such as -COOH (MPA) and -OH (MPE) lead to a so-called “on top” deposition mode.
According to this research, we can understand the mechanism of copper deposition due to the addition of thiol molecules. Moreover, the research provides people with a further consideration and suggestion about SAMs technology. Finally, it is expected that this technology is applicable for accelerator analysis and control in a practical plating bath.
中文摘要 i
英文摘要 iii
謝 誌 v
總目錄 vi
圖目錄 viii
表目錄 xvii
一、緒論 1
1-1前言 1
二、理論與文獻回顧 3
2-1文獻回顧 3
2-1-1銅製程技術簡介 3
2-1-2有機單分子層簡介 23
2-2研究目的 35
2-3研究方法 36
三、電鍍填孔實驗 37
3-1實驗方法與步驟 37
3-1-1實驗藥品 37
3-1-2實驗裝置 38
3-1-3實驗裝置 42
3-1-4實驗步驟 43
3-2實驗結果 46
四、自組裝薄膜(Self-assembled Monolayers,SAMs)的電化學行為 89
4-1電化學原理 89
4-1-1計時電位分析法(Chronopotentimetry,CP) 90
4-1-2線性掃描伏安法(Linear Sweep Voltammetry,LSV) 90
4-1-3極化曲線(Polarization Curve) 91
4-2實驗裝置 93
4-3實驗步驟 94
4-4實驗結果 95
五、結論 123
參考文獻 124
1.Prentice-Hall, ”Introduction of semiconductor Manufacturing Technology”, p.447, New Jersey, 2001.
2.P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni ,“Damascene copper electroplating for chip interconnections”, IBM J. Res. Develop. 42, 5, 567-574, 1998.
3.方景禮, “電鍍添加劑總論”, 傳勝出版社, 第14章, 民國85年。
4.H. Akahoshi,M. Kawamoto, T. Itabashi,O. Miura, A. Takashi, S. Kobayshi, M. Miyazaki, Y. moutoh, M. Wajima and T. Ishinaru, ”Fine Line Circuit Manufacturing Technology with electroless copper plating ” ,IEEE Trans. Comp. Pack. Manufact. Technol. , 18, 127-135, 1995.
5.F. E. Stone in ”Electroless Plating:Fundamentals and Applocations”, G. O. Mallory, J. B. Hajdu, Editors, American Electroplaters and Surface Finishers Society, Florida, 331, 1990.
6.S. Soukane, S. Sen and T. S. Caleb, ”Feature Superfilling in Copper Electrochemical Deposition”, J. Electrochem. Soc. , 149, C74-C81, 2002.
7.Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction”, J. Electrochem. Soc. , 142, L87-L89, 1995.
8.M. Yokoi, S. Konishi and T. Hayashi, “Adsorption behavior of polyoxyenthyleneglycol on the copper surface in an acid copper sulphate bath”, Denki Kagaku, 52, 218-223, 1984.
9.J. P. Healy and D. Pletcher, “The chemistry of the additives in an acid copper electroplating bath Part I. Polyethylene glycol and chloride ion”, J. Electroanal. Chem. , 338, 155-165, 1992.
10.D. Stoychev, C. Tsvetanov, “Behaviour of poly(ethylene glycol) during electrodeposition of bright copper coatings in sulfuric acid electrolytes”, J. Appl. Electrochem. , 26, 741-749, 1996.
11.J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol I. Quartz Crystal Microbalance Study”, J. Electrochem. Soc. , 145, 3472-3476, 1998.
12.J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol II.Electrochemical Impedance Spectroscopy”, J. Electrochem. Soc. , 145, 3477-3481, 1998.
13.L. Bonou, M. Eyraud, R. Denoyel, Y. Massiani, “Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by non-electrochemical measurements”, Electrochem Acta. , 47, 4139-4148, 2002.
14. K. Doblhofer, S. Wasle, D. M. Soares, K. G. Weil, and G. Ertl, ”An EQCM Study of the Electrochemical Copper(II)/Copper(I)/Copper System in the Presence of PEG and Chloride Ions”, J. Electrochem. Soc. , 150, C657-C664, 2003.
15. Z. V. Feng, X. Li, A. A. Gewirth, ”Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study”,J. Phys. Chem. B. , 107, 35, 9415-9423, 2003.
16.J. J. Kelly and A. C. West, “Leveling of 200 nm Featires by Organic Additives”, Electrochem. Solid-State Lett. ,2, 11, 561-563, 1999.
17.J. J. Kelly, C. Tian and A. C. West, “Leveling and Microstructural Effects of Additives for Copper Electrodeposition”, J. Electrochem. Soc. , 146, 2540-2545, 1999.
18.P. Taephaisitphongse, Y. g Cao and A. C. West, “Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition”, J. Electrochem. Soc. ,148, C492-C497, 2001.
19.N. Zukauskaite and A. Malinauskas, “Electrocatalysis by a Brightener in Copper Electrodeposition”, Sov. Electrochem. , 24, 1564, 1989.
20.J. P. Healy and D. Pletcher, “The chemistry of the additives in an acid copper electroplating bath PartⅡ.The instability of 4,5-dithiaoctane-1,8-disulphonic acid in the bath on open circuit”, J. Electroanal. Chem. , 338, 167, 1992.
21.E. E. Farndon, F. C. Walsh and S. A. Campbell, “Effect of Thiourea Benzotriazole and 4,5-Dithiaoctane-1,8-Disulphonic Acid on the Kinetics of Copper Deposition from Dilute Acid Sulphate Solutions”, J. Appl. Electrochem. , 25, 574, 1995.
22.E. Mattsson and J. O’M. Bockris, ”Glvanostic studies of The Kinetics of Depsition and Dissolution In the Copper+Cooper Sulphate System”, Trans. Farady Soc. , 55, 1586-601, 1959.
23.M. Fleischmann and H. R. Thirsk, ”Andoic Electrocrystallization”, Electrochim. Acta, 2, 22, 1960.
24.M. Kang, A. A. Gewirth, ” Influence of Additives on Copper Electrodeposition on Physical Vapor Deposited (PVD)… Copper Substrates”, J. Electrochem. Soc. , 150, C426-C434, 2003.
25. W. P. Dow, H. S. Huang, M. Y. Yen, H. H. Chen, “Roles of Chloride Ion in Micro Via-Hole Filling by Copper Electrodeposition II. Studies Using Electron Paramagnetic Resonance and Galvanostatic Measurements”, J. Electrochem. Soc. , revised, 2004.
26.W. L. Li, J. H. Ye and S. F. Y. Li, ”Electrochemical Deposition of Copper on Paterned Cu/Ta(N)/SiO2 Sufaces for SuperFilling of sub-micron Features”, J. Appl. Electrochem. , 31, 1395-1397, 2001.
27.S. C. Chang, J. M. Shieh, K. C. Feng, Y. H. Li and C. P. Lu, ”Wetting Effect on Gap Filling Sub-micron Damascene by an Electrolyte Free of Levelers”, J. Vac. Sci. Technol. B, 20, 1311~1316, 2002.
28.M. Hayase, M. Taketani, K. Aizawa, T. i. Hatuzawa and K. Hayabusa, “Copper Bottom-up Deposition by Breakdown of PEG-Cl Inhibition”, Electrochem. Solid-State Lett. , 5 , 10, C98-C101, 2002.
29.W. W. Dow, H. S. Huang and Z. Lin, ”Interactions Between Brightener and Chloride Ions on Copper Electroplating for Laser-Drilled Via-Hole Filling“, Electrochem. Solid-State Letters. , 6 , 9, C134-C136, 2003.
30.陳祥豪, ”填充微米級導孔與通孔用之新穎電鍍銅配方”, 雲林科技大學化學工程學系, 碩士論文, 93年
31.張學曾, ”含不同硫醇官能基混合的自我聚集性單分子層之表面分析與血小板吸附之研究”, 國立成功大學化學工程研究所碩士論文, 九十年
32.A. Kudelski, ”Chemisorption of 2-Mercaptoethanol on Silver, Copper,and Gold: Direct Raman Evidence of Acid-InducedChanges in Adsorption/Desorption Equilibria”, Langmuir, 19, 3805-3813, 2003.
33.A. Kudelski, ”Raman study on the structure of 3-mercaptopropionic acid monolayers on silver”, Surface Science, 502~503, 219–223, 2002.
34.H. Hagenstrom, M. A. Schneeweiss and D. M. Kolb, ”Modification of a Au(111) Electrode with Ethanethiol.2. Copper Electrodeposition”, Langmuir, 15, 7802-7809, 1999.
35.O. Azzaroni, M. E. Vela, M. Fonticelli, G. Benítez, P. Carro, B. Blμm and R. C. Salvarezza, ”Electrodesorption Potentials of Self-Assembled Alkanethiolate Monolayers on Copper Electrodes. An Experimental and Theoretical Study”, J. Phys. Chem. B, 107, 48, 13446-13454, 2003.
36.M. J. Esplandiu, H. Hagenstrom,D. M. Kolb, ” Functionalized Self-Assembled Alkanethiol Monolayers on Au(111) Electrodes: 1. Surface Structure and Electrochemistry”, Langmuir, 17, 828-838, 2001.
37.A. Kudelski, ”Structures of monolayers formed from different HS-(CH2)2-X thiols on gold,silver and copper:comparitive studies by surface-enhanced Raman scattering”, J. Raman Spectrosc. , 34, 853-862, 2003.
38.A. Michota, A. Kudelski, J. Bukowska, ”Chemisorption of Cysteamine on Silver Studied by Surface-Enhanced Raman Scattering”, Langmuir, 16, 26, 10236-10242, 2000.
39. A. Michota, A. Kudelski and J. Bukowska, ” Influence of electrolytes on the structure of cysteamine monolayer on silver studied by surface-enhanced Raman scattering”, J. Raman Spectrosc. , 32, 345–350, 2001.
40. A. Michota, A. Kudelski and J. Bukowska, ”Influence of electrolytes on the structure of cysteamine monolayer on silver studied by surface-enhanced Raman scattering”, J. Raman Spectrosc. , 32, 345–350, 2001.
41.A. Kudelski, ”Raman and Electrochemical Characterization of 2-Mercaptoethanesulfonate Monolayers on Silver: A Comparison with Monolayers of 3-Mercaptopropionic Acid“, Langmuir, 18, 12, 4741-4747, 2002.
42.A. Kudelski, M. Pecul and J. Bukowska, ”Interaction of 2-mercaptoethanesulfonate monolayers on silver with sodiμm cations”, J. Raman Spectrosc. , 33, 796–800, 2002.
43.J. Noh and M. Hara, ”Nanoscopic Evidence for Dissociative Adsorption of Asymmetric Disulfide Self-Assembled Monolayers on Au(111)”, Langmuir Letters, 16, 5, 2000.
44.C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, R. G. Nuzzo, ”Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold”, J. Am. Chem. Soc. , 111, 321-335, 1989.
45.J. A. M. Sondag-Huethorst, L. G. J. Fokkink, ”Electrochemical Characterization of Functionalized Alkanethiol Monolayers on Gold”, Langmuir,11, 2237-2241, 1995.
46.Cavalleri, Ornella, Gilbert, Scott E. , Kern, Klaus, ”Electrochemical Cu deposition on thiol covered Au(111)”, Surface Science, 377~379, 931-936, 1997.
47.E. D. Eliadis, R. G. Nuzzo, A. A. Gewirth and R. C. Alkire, ”Copper Deposition in the Presence of Surface-Confined Addtives”, J. Electrochem. Soc. , 144, 1, 1997.
48. M. Nishizawa, T. Sunagawa,H. Yoneyama, ”Underpotential Deposition of Copper on Gold Electrodes through Self-Assembled Monolayers of Propanethiol”, Langmuir, 13, 5215-5217, 1997.
49.J. G. Xu,X. W. Wang, ”Study of copper underpotential deposition on Au(111) surfaces”, Surface Science, 408, 317-325, 1998.
50.H. Hagenstrom, M. A. Schneeweiss,D. M. Kolb, ”Modification of a Au(111) Electrode with Ethanethiol. 2. Copper Electrodeposition”, Langmuir, 15, 7802-7809, 1999.
51.M. A. Schneeweiss, H. Hagenstrom, M. J. Esplandiu, D. M. Kolb, ”Electrolytic metal deposition onto chemically modified electrodes”, Appl. Phys. , A69, 537-551, 1999.
52.X. G. Zhang, X. H. Li and H. L. Li, ”The Influence of Bromine Adsorption on Copper Electrodeposition on Polycrystalline Gold Electrodes Modified with Self-Assembled Monolayers”, J. Colloid and Interface Science, 234,68-71, 2001.
53.T. P. Moffat,Z. D. Wheeler and D. Josell, “Electrodeposition of Copper in the SPS-PEG-Cl Additive System”, J. Electrochem. Soc. ,151, C262-C271, 2004.
54.黃河樹, ”有機添加劑對電鍍銅填充IC基板微米級盲孔之反應機制研究”, 雲林科技大學工業化學與災害防治研究所碩士論文, 民國92年
55.B. H. Wu, C. C. Wan and Y. Y. Wang, ”Void-free anisotropic deposition for IC interconnect with polyethylene glycol as the single additive based on uneven adsorption distribution”, J. Appl. Electrochem. , 33, 823~830, 2003.
56. W. P. Dow and H. S. Huang, "Roles of Chloride Ion in Micro Via-Hole Filling by Copper Electrodeposition I. Studies Using Scanning Electron Microscope and Optical Microscope", J. Electrochem. Soc. , in revision, 2004.
57.H. P. Lee, K. Nobe and A. J. Pearlstein, “Film formation and current oscillations in the electrodissolution of Cu in Acidic Chloride media iexperimental studies”, J. Electrochem. Soc. , 132, 1031-1038, 1985.
58.T. Kekesi and M. Isshiki, “Electrodeposition of copper from pure cupric chloride hydrochloric acid solutions”, J. Appl. Electrochem, 27, 982-990, 1997.
59.T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford and D. Josell, “Superconformal Electrodeposition of Copper in 500-90 nm Features”, J. Electrochem. Soc. , 147, 4524, 2000.
60.T. P. Moffat, D. Wheeler, W. H. Huber, and D. Josell, “Superconformal Electrodeposition of Copper”, Electrochem. Solid-State Lett. , 4, C26-C29, 2001.
61.D. Josell, D. Wheeler, W. H. Huber and T. P. Moffat, “Superconformal Electrodeposition in Submicron Features”, Phys. Rev. Lett. , 87, 16102, 2001.
62.D. Josell, D. Wheeler, W. H. Huber, J. E. Bonevich and T. P. Moffat, “A Simple Equation for Predicting Superconformal Electrodeposition in Submicronmeter Trenches”, J. Electrochem. Soc. , 148, C767-C773, 2001.
63.K. Takeshi, K. Junichi, M. Kuniaki, “Influence of Bath Composition to Via-Filling by Copper Electroplating”, J. Jpn. Ins. Electro 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊