跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉靜瑜
研究生(外文):Jing-Yu Liu
論文名稱:以化學改質幾丁聚醣袪除水中砷之研究
論文名稱(外文):Removal of Arsenic from Water by Chemical Modified Chitosan
指導教授:黃振家黃振家引用關係
指導教授(外文):Chen-Chia Huang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:107
中文關鍵詞:幾丁聚醣廢水處理
外文關鍵詞:wastewater treatmentarsenicchitosan
相關次數:
  • 被引用被引用:2
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨在探討以化學改質幾丁聚醣袪除水中砷酸根離子。以幾丁聚醣粉末,製備成珠粒狀之型態,分別製備未交聯、已交聯及以鉬酸銨加以改質。利用電子顯微鏡(SEM)觀察幾丁聚醣珠粒表面結構;並以傅立葉紅外線轉換光譜分析儀(FTIR)確認交聯情形。以批次方式進行砷酸根離子平衡吸附及動力參數實驗,獲得吸附及脫附的最適pH值。探討參數包含幾丁聚醣溶液濃度、交聯濃度、交聯時間、砷酸溶液pH值。
以未交聯幾丁聚醣吸附砷可得吸附量為1.95mg As(III)g-1,5.853mg As(V)g-1;交聯幾丁聚醣吸附砷可得吸附量0.931mg As(III)g-1,5.115mg As(V)g-1。經鉬酸改質後未交聯及交聯幾丁聚醣珠粒對於砷酸吸附量分別為2.746 mg As(III)g-1,9.425 mg As(V)g-1 (未交聯);吸附砷量為2.44 mg As(III)g-1,7.635 mg As(V)g-1 (交聯幾丁聚醣)。由砷離子吸附實驗數據分析顯示,平衡吸附符合Langmuir模式,吸附動力符合擬二級動力學模式。利用鹽酸或磷酸進行脫附,再生後珠粒再吸附重複五循環後對砷離子仍有不錯吸附力,實驗結果顯示浸染鉬幾丁聚醣珠粒對砷的袪除具實用性。
The aim of this thesis was to study the removal of arsenic from water by chemical modification chitosan beads. Two types of chitosan beads, including uncrosslinked and crosslinked were prepared. Both beads were modified by impregnation with molybdate solution. A SEM was utilized to observe the surface structure of chitosan beads. An FTIR was used to conform crosslinking reaction. The equilibrium adsoption and kinetic experiments were conducted to gain the optimal pH value of arsenate solution by batch experimental process. The parameters such as the chitosan concentration, crosslinking agent concentration, crosslinking time and pH of solutions, were investigated.
The adsorption capacities of arsenic were 1.95 mgAs(III)g-1, 5.853mgAs(V)g-1 on uncrosslinking chitosan beads. For crosslinking chitosan beads, the adsorption amounts were 0.931mg As(III)g-1, 5.115mg As(V)g-1. After chemical modification, the adsorption capacities increase to 2.746mg As(III)g-1, 9.5425mg As(V)g-1, and 2.44mg As(III)g-1, 7.635mg As(V)g-1 for uncrosslinking and crosslinking chitosan beads, respectively. The experimental equilibrium data fitted the Langmuir model well. The pseudo second order kinetic model was found to fit the kinetic experimental data. The regeneration process was performed by hydrochloric acid or phosphoric acid to desorb arsenic from chitosan beads. It was found that chitosan beads still have high adsorption capacity after five cycles of adsorption-desorption processes. The experimental results showed the impregnated molybdate chitosan beads were promised to remove arsenic from water.
中文摘要 ............................................................................................. i
英文摘要 ………………………………………………………......... ii
誌謝 ……………………………………………………………. iii
目錄 ………………………………………………………......... iv
表目錄 ………………………………………………………......... vii
圖目錄 ………………………………………………………......... viii
一、 前言………………………………………………………. 1
二、 文獻回顧……………………………………………......... 3
2.1 幾丁質與幾丁聚醣…………………………………......... 3
2.1.1 幾丁質………………………………………………......... 3
2.1.2 幾丁聚醣……………………………………………......... 3
2.1.3 幾丁質與幾丁聚醣之結構特性……………………......... 4
2.2 幾丁質與幾丁聚醣的製備…………………………......... 6
2.3 幾丁質與幾丁聚醣之性質分析……………………......... 8
2.3.1 幾丁聚醣之去乙醯度測定…………………………......... 8
2.3.2 幾丁聚醣之分子量測定…………………………………. 10
2.4 幾丁聚醣與幾丁聚醣性質及應用………………………. 11
2.4.1 幾丁聚醣在農業上之應用………………………………. 11
2.4.2 幾丁聚醣在化學工業上之應用…………………………. 12
2.4.3 幾丁聚醣在食品加工上之應用…………………………. 12
2.4.4 幾丁聚醣在化妝品上之應用……………………………. 12
2.4.5 幾丁聚醣在生醫材料之應用……………………………. 15
2.4.6 幾丁聚醣在廢水中之重金屬上之應用…………………. 17
2.5 廢水中砷及重金屬離子之袪除…………………………. 17
2.6 吸附模式…………………………………………………. 25
2.7 動力學探討………………………………………………. 27
2.8 熱力學性質探討…………………………………………. 28
三、 實驗…………………………………………………......... 30
3.1 原料試劑……………………………………………......... 30
3.2 實驗設備……………………………………………......... 30
3.3 實驗方法……………………………………………......... 31
3.3.1 幾丁聚醣之性質分析………………………………......... 31
3.3.2 幾丁聚醣珠粒製備…………………………………......... 32
3.3.2-1 未交聯、已交聯幾丁聚醣珠粒製備………………......... 32
3.3.2-2 浸染幾丁聚醣珠粒之製備…………………………......... 32
3.3.3 浸染量測量…………………………………………......... 34
3.3.4 吸附砷之實驗……………………………………............. 34
3.3.4-1 重金屬溶液標準曲線…………...……………………….. 34
3.3.4-2 未交聯、交聯及浸染幾丁聚醣珠粒吸附能力實驗……. 34
3.3.5 幾丁聚醣交聯前後分析……………………………..…... 35
3.3.5-1 傅立葉轉換紅外線光譜分析………………………......... 35
3.3.5-2 交聯指數…………………………………………………. 35
3.3.6 吸水性測試………………………………………………. 37
3.3.7 幾丁聚醣交聯前後之性質分析……………………......... 37
3.3.7.1 掃描式電子顯微鏡(SEM)………………………….……. 37
3.3.8 幾丁聚醣珠粒脫附及再生試驗………………………… 37
3.3.9 等溫吸附模式實驗………………………………………. 38
3.3.10 動力學模式及熱力學模式之探討………………………. 38
四、 結果與討論…………………………………………......... 39
4.1 幾丁聚醣的性質分析………………………………......... 39
4.1.1 幾丁聚醣分子量……………………………………….. 39
4.1.2 幾丁聚醣去乙醯度……………………………………… 39
4.2 交聯程度分析…………………………………………… 39
4.2.1 傅立葉轉換紅外線光譜分析(FTIR)………………......... 39
4.2.2 交聯指數……………………………………………......... 42
4.3 膨潤度……………………………………………………. 44
4.4 幾丁聚醣交聯前後性質分析……………………………. 44
4.5 幾丁聚醣的製備濃度效應…………………………......... 44
4.5.1 pH值效應…………………………………………......... 44
4.5.2 溫度的影響…………………………………………......... 51
4.6 交聯幾丁聚醣吸附砷………………………………......... 51
4.6.1 交聯濃度對吸附砷之影響…….………………………… 51
4.6.2 交聯時間對吸附砷之影響…………………………......... 56
4.6.3 pH值效應……..……………………………………......... 56
4.6.4 溫度之影響…………………………………………......... 61
4.6.5 未交聯幾丁聚醣珠粒與交聯幾丁聚醣珠粒吸附量比較. 61
4.7 幾丁聚醣之化學改質………………………………......... 64
4.7.1 未交聯幾丁聚醣浸染鉬……………………………......... 64
4.7.2 已交聯幾丁聚醣浸染鉬……………………………......... 64
4.8 幾丁聚醣之化學改質吸砷…………………………......... 65
4.8.1 浸染液濃度對吸附砷之影響………………………......... 65
4.8.2 pH值效應………………………………………............... 75
4.8.3 改值後吸附量之比較………………………………......... 78
4.8.4 溫度之影響………………………………………............. 78
4.9 吸附模式探討………………………………………......... 78
4.10 吸附動力學探討……………………………………......... 78
4.11 熱力學探討…………………………………………......... 87
4.12 幾丁聚醣脫附再生實驗…………………………………. 87
五、 結論………………………………………………………. 98
六、 參考文獻…………………………………………………. 100
自述………………………………………………………. 107
1.王三郎,1995,水產資源利用學,高立圖書出版社。
2.王己由,2001,中國時報。
3.林錫杰,1999,幾丁聚醣在環保方面之應用,科學與技術,專題報告。
4.李勳宜,1988,草蝦幾丁聚醣之製備及應用研究,國立台灣大學食品科技研究所碩士論文。
5.顏棋鑫,2002,幾丁聚醣顆粒吸附有害重金屬之探討,朝陽科技大學應用化學系。
6.郭建良,低分子量幾丁聚醣對雙叉桿菌及其他細菌之影響,國立台灣大學,食品科技研究所碩士論文。
7.蘇遠志、楊坤祥,1995,幾丁質及幾丁聚醣之製造改良法,中華民國發明專利第076140號。
8.陳美惠、莊淑惠、吳志津,1999,幾丁聚醣的物化特性,食品工業。
9.徐世昌,2001,生物性高分子-幾丁質幾丁聚醣之介紹與應用,化工資訊,生質資源專題。
10.徐薇如,2000,幾丁聚醣/藻酸鈣生物高分子對重金屬吸附行為之研究,國立交通大學應用化學研究所碩士論文。
11.賴惠敏等,1999,生醫高分子商機與策略。
12.環保署,放流水標準,民國92年6月。
13.環保署,飲用水質標準,民國89年。
14.Aiedeh K., E. Gianasi, I. Orienti, V. Zecchi, 1997, “Chitosan microcapsules as controlled release systems for insulin,” J. Microencapsul, vol. 14, pp. 567-576.
15.Alonso, G., C. Penichi-Covas, J. M. Nieto, 1980, Thermal. Anal., vol. 28, pp. 189.
16.Amiji M. M., 1998, “Platelet adhesion and activation on an amphoteric chitosan derivative bearing sulfonate groups,” Coll. and Sur. B:Biointerfaces, vol. 10, pp. 263.
17.An H. K., B. Y. Park, and D. S. Kim, 2001, “Crab shell for the removal of heavy metals from aqueous solution,” Wat. Res., vol. 35(15), pp. 3551-3556.
18.Chen, R. H., M. L. Tsaih, 1997, “Effect of molecular weight and urea on the conformation of chitosan molecules in dilute solution,” International Journal of Bio. Macromol., vol. 20, pp. 233-240.
19.Chirachanchai S., A. Lertworasirikul, and W. Tachaboonyakiat, 2001, Carbo. Poly., vol. 46, pp. 19-27.
20.Dambies L., E. Guibal, and A. Roze, 2000, “Arsenic(V) sorption on molybdate-impregnated chitosan beads,” Coll. Sur., vol. 170, pp. 19-31.
21.Dambies L., T. Vincent, A. Domard, and E. Guibal, 2001, “Preparation of chitosan gel beads by ionotropic molybdate gelation,” Biomacromol., vol. 2, pp. 1198-1205.
22.Dambies L., E. Guibal, and A. Roze, 2000, Coll. and Sur., vol. 170, pp. 19-31.
23.Domszy J. G., G. A. F. Roberts, 1985, Makromol. Chem., vol. 186, pp. 1671.
24.Elson C. M., D. H. Davies, and E. R. Hayes, 1980, “Removal of arsenic from contaminated drinking water by a chitosan/chitin mixture,” Wat. Res., vol. 14, pp. 1307-1311.
25.Emett M.T., G. Khoe, 2000, “Photochemical oxidation of arsenic by oxygen and iron in acidic solutions,” vol. 35, pp. 649-656.
26.Gupta, K. Y., 1978, “Arsenic removal by adsorption,” J. Wat. Pollut. Control Fed., vol. 50, pp. 493-506.
27.Guzman J., I. Saucedo, R. Navarro, J. Revilla, and E. Guibal, 2002, “Vanadium interactions with chitosan: Influence of polymer protonation and metal speciation,” Langmuir, vol. 18, pp. 1567-1573.
28.Hall K. R., L. C. Eagleton, and A. Acrivos, 1996, Ind. Eng. Chem., vol. 5, pp. 212.
29.Hsien, T. Y., Rorrer G. L., 1995, “Effects of acylation and crosslinking on the material properties and cadmium ion adsorption capacity of porous chitosan beads,” Sep. Sci. Technol, vol. 30, pp. 2455-2475.
30.Inoue K., Y. Baba, and K. Yoshizuka, 1993, “Adsorption of metal ions on chitosan and crosslinked copper(II)-complexed chitosan,” Bull. Chem. Soc. Jpn, vol. 66, pp. 2915-2921.
31.Inoue K., K. Yoshizuka, and K. Ohto, 1999, “Adsorption separation of some metal ions by complexing agent types of chemically modified chitosan,” Analytica. Chimica Acta., vol. 388, pp. 209-218.
32.Jansson-Charrier M., E. Guibal, J. Roussy, B. Delanghe, and P. Cloirec, 1996, “Vanadium(IV) sorption by chitosan: Kinetic and equilibrium,” Wat. Res., vol. 30, pp. 465-475.
33.Jeffers, T. H., Ferguson, C., and S. H. Qulnn, 1991, “Mathematically Modeling the Removal of Heavy Metals from a Wasetewater Using Immobilized Biomass,” Environ. Sci. Technol., vol. 25, pp. 1559-1565
34.Juang R. S., H. J. Shao, 2002, “Simplified equilibrium model for sorption of heavy metal ions from aqueous solution on chitosan,” Wat. Res., vol. 36, pp. 2999-3008.
35.Juang R. S., F. C. Wu, and R. L. Tseng, 1999, “Adsorption removal of copper(II) using chitosan from simulated rinse solutions containing chelating agents,” Wat. Res., vol. 33, pp. 2403-2409.
36.Kawamura Y., M. Mitsuhashi, and H. Tanibe, 1993, “Adsorption of metal ions on polyaminated highly porous chitosan chelating resin,” Ind. Eng. Chem. Res., vol. 32, pp. 386-391.
37.Kinniburgh D.G., 1986, Environ. Sci. Technol., vol. 20, pp. 895.
38.Knorr, D., 1984, “Use of chitinous polymers in food challenge for food research and development,” Food Tech., vol. 38(1), pp. 85-97.
39.Korngold E., N. Belayev, L. Aronov, 2001, “Removal of arsenic from drinking water by anion exchangers,” Desalination, vol. 141, pp. 81-84.
40.Liu X. D., S. Tokura, M. Haruki, N. Nishi, N. Sakairi, 2002, “Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ion,” Carbo. Poly., vol. 49, pp. 103-108.
41.Lorenzen L., J. S. J. van Deventer, and W. M. Landi, 1995, Miner. Eng, vol. 8, pp. 557.
42.Martinou A., D. Kafetzopoulos, V. Bouriotis, 1995, Carbo. Res., vol. 273, pp. 235-242.
43.Meng X., S. Bang, and G. P. Korfiatis, 2000, “Effects of silicate,sulfate, and carbonate on arsenic removal by ferric chloride,” Wat. Res., vol. 34, pp. 1255-1261.
44.Mima, S., M. Miya, R. Iwamoto, and S. Yoshikawa.,1983, “Highlydeacetylated chitosan and it’s properties,” J. Appl. Polym. Sci., vol. 28, pp. 1909-1917.
45.Miyazaki S., K. Ishii, T. Nadai, 1981, “ The use of chitin and chitosan as drug carriers,” vol. 29, pp. 3067-3069.
46.Moore G. K., G. A. F. Roberts, 1987, Biol. Macromol., vol. 3, pp. 337.
47.Muzzarelli R. A. A., F. Tanfani, 1980, J. Bioch. Biophy. Methods., vol. 2, pp. 299.
48.Ng J. C. Y., W. H. Cheung, and G. McKay, 2002, “Equilibrium studies of the sorption of Cu(II) ions onto chitosan,” Jour. of Coll. and Inter. Sci., vol. 255, pp. 64-74.
49.Ning R. Y., 2002, “Arsenic removal by reverse osmosis,” Desalination, vol. 143, pp. 237-241.
50.Piron E., M. Accominotti, and A. Domard, 1997, “Interaction between chitosan and Uranyl ions. Role of physical and physicochemical parameters on the kinetics of sorption,” Langmuir, vol. 13, pp. 1653-1658.
51.Poulicek, M., M. F. Voss-foucart, and C. Jenuianx, 1986, Proceedings of the Third Internation Conference on chitin and Chitosan.
52.Qin Y., 1993, “The chelating properties of chitosan fibers, ” Jour. of Appl. Poly. Sci., vol. 49, pp. 727-731.
53.Rajakovic J. V., 1992, “The sorption of arsenic onto activated carbon impregnated with metallic silver and copper,” Sep. Sci. Technol., vol. 11,
pp. 1423-1433.
54.Rhoades J., S. Roller, 2000, “Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods,” Appl. and Environ. Microbio., vol. 66, pp. 80-86.
55.Rhazi M., J. Desbrieres, A. Tolaimate, M. Rinaudo, P. Vottero, A. Alagui, and M. El Meray, 2002, “Influence of the nature of the metal ions on the complexation with chitosan ; Application to the treatment of liquid waste, ”European Poly. Jour., vol. 38, pp. 1523-1530.
56.Rorrer G. L., T.-Y. Hsien, and J. D. Way, 1993, “Synthesis of Porous-Magnetic Chitosan beads for removal of Cadmium ions from waste water,” Ind. Eng. Chem. Res., vol. 32, pp. 2170-2178.
57.Shahidi, F., J. K. V. Arachchi, and Y. J. Jeon, 1999, “Food applications of chitin and chitosan,” Trends Food Sci. Tech., vol. 10, pp. 37-51.
58.Udaybhaskar P., L. Iyengar, and A. V. S. Prabhakara, 1990, “Exavalent chromium interaction with chitosan,” J. Appl. Polym. Sci., vol. 39, pp. 739-747
59.Wang W., S. Bo, S. Li, W. Qin, and J. Biol., 1991, Macromol., vol. 13, pp. 281-285.
60.Wan Ngah W. S., C. S. Endud, and R. Mayanar, 2002, “Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads,” React. & Funct. Poly., vol. 50, pp. 181-190.
61.Wan Ngah W. S., K. H. Liang, 1999, “Adsorption of Gold(III) ion onto chitosan and N-carboxymethyl chitosan: Equilibrium Studies,” Ind. Eng. Chem. Res., vol. 38, pp. 1411-1414.
62.Yang, R. T., 1987, Gas Separation by adsorption Processed, Butterworths, America.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top