跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 16:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂正源
研究生(外文):Jeng-Yuan Lu
論文名稱:奈米級SiO2/TiO2複合光觸媒材料之製備與其物性探討
論文名稱(外文):The study on preparation and characterization of SiO2/TiO2
指導教授:楊肇政楊肇政引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:95
中文關鍵詞:溶膠凝膠法複合材料親水性質
外文關鍵詞:hydrophilic propertycomposite materialSol-Gel method
相關次數:
  • 被引用被引用:2
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用溶膠凝膠法(Sol-Gel method)製備TiO2與SiO2/TiO2光觸媒材料並探討不同Si/Ti莫耳比及燒結溫度對材料性質的影響。材料特性及表面型態等性質,以FT-IR、XRD、TEM、SEM、BET與接觸角測試儀等加以分析探討。光催化活性評估方面,探討固-液相與固-氣相反應系統。
由SiO2/TiO2 複合材料之FT-IR光譜分析圖得知,在 1080cm-1 與960cm-1處,分別屬於Si-O-Si 和Si-O-Ti之吸收振盪;XRD圖則顯示SiO2/TiO2具有抑制相轉換的現象發生。依TEM、SEM表面型態觀察得知,TiO2隨著燒結溫度提高,粒徑有大幅成長的趨勢,反觀SiO2/TiO2複合材料隨著燒結溫度的提高,粒徑卻無相當的變化,因此溫度效應對於複合態材料影響並不明顯。以溶膠凝膠法制備的奈米材料,藉由四乙基氧化矽的導入,其比表面積有明顯增加之趨勢。
光降解試驗方面,分別探討固-液相與固-氣相反應系統。複合化SiO2/TiO2(莫耳比1:9)之亞甲基藍溶液去除率於UV光照射5小時後可達約100%的效果;乙醛光分解反應經UV光照射3小時後可達約90%的分解效率,結果顯示SiO2/TiO2較TiO2具優異光催化特性。另依接觸角測試值顯示,TiO2與SiO2 /TiO2分別經由薄層披覆及紫外光照射後,兩者均有提升ITO導電基材之親水特性。
In this study, titania and silica-titania nanocomposite material have been prepared by sol-gel method. The effect of different Si/Ti molar ratio and annealed temperature of dry gel on the properties of nanocomposite material have been discussed. The samples were characterized by various analytical techniques such as Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), Transmission electron microscope (TEM), Scanning electron microscope (SEM), low temperature N2 sorption(BET) and contact angle tester. The photocatalytic activity of the prepared sample was evaluated by both solid-liquid and solid-gas phase reaction systems.
The observation on FT-IR spectra of silica-titania that bands at 1080cm-1 and 960cm-1 are assigned to Si-O-Si and Si-O-Ti vibration, respectively. The results of XRD reveal that silica-titania shows a significant inhibition of phase transition from anatase to rutile in comparision with pure titania. From TEM and SEM micrograph that particle sizes of titania was grew up with increased temperature, but grain of silica-titania was not grew up obviously in the same temperature condition. The specific surface area of nanocomposite material was increased by means of adding Si(OC2H5)4 in the Sol-Gel method.
The photocatalytic activity examination carrys out by both solid-liquid phase and solid-gas phase photocatalytic reaction systems. The photocatalytic reaction demonstrated nearly 100% degradation of methylene blue for 5 hours exposure under UV-light. About 90% decomposition effect of acetaldehyde was obtained with 1:9 molar ratio of silica-titania for 3 hours UV-light exposure. As a result, photocatalytic activity with SiO2/TiO2 is proven to be more effective than with titania. For contact angle tested, the hydrophilic property of ITO glass matrix that coated with titania and silica-titania is observed to improve dramatically.
中文摘要-----------------------------------------------------------Ⅰ
英文摘要-----------------------------------------------------------Ⅲ
誌謝---------------------------------------------------------------Ⅴ
目錄 --------------------------------------------------------------Ⅵ
表目錄 ------------------------------------------------------------Ⅷ
圖目錄 ------------------------------------------------------------Ⅸ
第一章 緒論 -------------------------------------------------------1
1-1 前言-----------------------------------------------------------------------------------------1
1-2 研究目的及內容--------------------------------------------------------------------------2
1-2-1 研究目的 ----------------------------------------------------------------------------2
1-2-2 研究內容 ----------------------------------------------------------------------------2

第二章 理論及文獻回顧---------------------------------------------------------------------4
2-1 奈米效應-----------------------------------------------------------------------------------4
2-1 半導體原理--------------------------------------------------------------------------------7
2-2-1 半導體特性 -------------------------------------------------------------------------7
2-2-2 能帶間隙 ----------------------------------------------------------------------------9
2-2-3 費米能階 ----------------------------------------------------------------------------10
2-3 二氧化鈦光觸媒--------------------------------------------------------------------------11
2-3-1 二氧化鈦結構與性質 -------------------------------------------------------------11
2-3-2 二氧化鈦光化學性質 -------------------------------------------------------------13
2-3-3 二氧化鈦之應用 -------------------------------------------------------------------15
2-4 二氧化鈦光觸媒之改質-----------------------------------------------------------------18
2-5 亞甲基藍試劑-----------------------------------------------------------------------------20
2-5-1 亞甲基藍之性質 -------------------------------------------------------------------20
2-5-2 亞甲基藍濃度量測原理 ----------------------------------------------------------21
2-5-3 亞甲基藍光分解反應 -------------------------------------------------------------23
2-6 乙醛試劑-----------------------------------------------------------------------------------25
2-6-1 乙醛之性質 -------------------------------------------------------------------------25
2-6-2 乙醛光分解反應 -------------------------------------------------------------------27

第三章 實驗內容與方法 ------------------------------------------------------------------28
3-1 實驗內容-----------------------------------------------------------------------------------28
3-2 實驗藥品-----------------------------------------------------------------------------------30
3-3 實驗儀器-----------------------------------------------------------------------------------31
3-4 SiO2/TiO2複合光觸媒材料之製備---------------------------------------------------34
3-5 SiO2/TiO2光觸媒特性分析------------------------------------------------------------36
3-6 光分解實驗--------------------------------------------------------------------------------39
3-6-1 亞甲基藍染料分解測試 ----------------------------------------------------------39
3-6-2 乙醛氣體分解測試 ----------------------------------------------------------------41
3-7 接觸角測試 -----------------------------------------------------------------------------43
3-8 硫酸進行二氧化鈦改質 --------------------------------------------------------------44

第四章 結果與討論 -------------------------------------------------------------------------45
4-1 光觸媒特性分析 ------------------------------------------------------------------------45
4-1-1 熱重分析(TGA) --------------------------------------------------------------------45
4-1-2 傅立葉轉換紅外線光譜分析(FT-IR) ---------------------------------------49
4-1-3 X-ray粉末繞射(XRD) -------------------------------------------------------50
4-1-4 表面型態分析(TEM)&(SEM)----------------------------------------------------55
4-1-5 氣體吸附分析(BET) -----------------------------------------------------------64
4-2 固-液相光分解亞甲基藍實驗 --------------------------------------------------------65
4-3 固-氣相光分解乙醛實驗 --------------------------------------------------------------70
4-4 接觸角測試 ------------------------------------------------------------------------------73
4-5 硫酸改質二氧化鈦之特性分析 ------------------------------------------------------80
4-5-1傅立葉轉換紅外線光譜分析(FT-IR) ---------------------------------------80
4-5-2 X-ray粉末繞射(XRD) ---------------------------------------------------------81
4-5-3元素分析(EA) ---------------------------------------------------------------------83

第五章 結論 ----------------------------------------------------------------------------------84
檢討與改進-------------------------------------------------------------------------------------88
參考文獻 -------------------------------------------------------------------------------------89
自述----------------------------------------------------------------------------------------------95
1. 李世光、張所鋐、林世明、張培仁、林啟萬、黃榮山、胡毓忠、
劉安順、孫美芳、韓謝忱、陳吉良、劉盈村、王裕銘,奈米科學與技術導論,經濟部工業局(2002)。
2.鄭祐誠,一種新型二氧化鈦奈米材料的合成及其在光催化的應用,彰師大,碩士論文(2003)。
3. S.M.SZE,Semiconductor Devices physics and technology,張俊彥譯,(1998)。
4. Stumm, W.,Chemistry of the Solid-Water Interface, John Wiley and Sons, New York,(1992).
5. Hong Xiao,Introduction to Semiconductor Manufacturing Technology,羅正忠、張鼎張譯,(2002)。
6. A. J. Bard, Integrated Chemical Systems, chap. 6, John Wiley & Sons, Inc., New York,(1994).
7. A. Fujishima, K. Honda, Nature 238 (1972).
8. F.A. Grant, Rev. Mod. Phys. 31 (1959).
9. G.V. Samsonov, The Oxide Handbook, IFI/Plenum Press, New York, (1982).
10. A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis Fundamentals and Applications, BKC Inc., Japan, (1999).
11.Linsebigler A. L., Lu G., Tates Jr. J. T., Chem. Rev. 95(1995).
12. Fox, M. A. and M. T. Dulay, Heterogeneous Photocatalysis, Chem. Rev., 93, pp. (1993).
13. Kamat, P. V., Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces, Chem. Rev., 93, pp. (1993).
14. A. Houas, Hinda Lachheb, Mohamed Ksibi, Elimame Elaloui, Chantal Guillard, Jean-Marie Herrmann. Applied Catalysis B: Environmental 31 (2001).
15. 藤山鳥昭、橋本和仁、渡部俊也,光清淨革命-活躍的二氧化鈦光觸媒,張立群譯,呂宗昕校訂,協志工業叢書發行,(2000)。
16. Kayano Sunada et al., J. Antibact Antifung Agents 26 No.11 (1998).
17. Akira Nakajima, Shin-ichi Koizumi, Toshiya Watanabe, Kazuhito Hashimoto / Journal of Photochemistry and Photobiology A: Chemistry 146 (2001).
18. Masahiro Miyauchi, Nobuo Kieda, Shunichi Hishita, Takefumi Mitsuhashi, Akira Nakajima, Toshiya Watanabe, Kazuhito Hashimoto / Surface Science 511 (2002).
19. Andrew Mills, George Hill, Sharan Bhopal, Ivan P. Parkin, Shane A. O''Neill / Journal of Photochemistry and Photobiology A: Chemistry 160 (2003).
20. Ashti Rampaul, Ivan P. Parkin, Shane A. O''Neill, Juilio DeSouza, Andrew Mills, Nickolas Elliott / Polyhedron 22 (2003).
21. 陳皇妃,二氧化鈦光觸媒的製備與殺菌效果之研究,雲林科大,碩士論文 (2001)。
22. 陳益國,二氧化鈦光觸媒奈米粉末之製備及其光催化效果之研究,雲林科大,碩士論文 (2003)。
23. 劉德勇,江旭政,電機月刊,(1999)。
24. 王文、顧洋,以新式光觸媒反應器處理氣相有機污染物之研究,第十六屆空氣污染控制技術研討會,雲林 (2000)。
25. Prengle, H. W. and C. E. Mauk, New Technology: Ozone/UV Chemical Oxidation Waste Water Process for Metal Complexes, Organic Species and Disinfection, Aiche Sym. Ser., Vol. 74, No. 178, (1978).
26. Torimoto T, Okawa Y, Takeda N, Yoneyama H, Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behavior of dichloromethane, J Photochem Photobiol A: Chem (1997).
27. Sampath S, Uchida H, Yoneyama H, Photocatalytic degradation of gaseous pyridine over zeolite-supported titanium dioxide, J Catal (1994).
28. Xu Y, Langford CH, Photocativity of titanium dioxide supported on MCM41, zeolite X, and zeolite Y, J Phys Chem (1997).
29. Anderson C, Bard AJ, An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis, J Phys Chem (1995).
30. M.S. Vohra, K. Tanaka / Water Research 37 (2003).
31. Isao Kimura, Takayuki Kase, Yoshinari Taguchi, Masato Tanaka / Materials Research Bulletin 38 (2003).
32. B. Malinowska, J. Walendziewski, D. Robert, J. V. Weber, M. Stolarski / Applied Catalysis B: Environmental 46 (2003).
33. Chuan-yi Wang, Chun-yan Liu, Yun Liu, Zhi-ying Zhang, Applied Surface Science 147 (1999).
34. Veronica Vamathevan, Helen Tse, Rose Amal, Gary Low, Stephen McEvoy, Catalysis Today 68 (2001).
35. Takeshi Sasaki, Naoto Koshizaki, Michio Koinuma, Yasumichi
Matsumoto, NanoStructured Materials 12 (1999).
36. Teruhisa Ohno, Keizo Nakabeya, Kan Fujihara, Michio Matsumura, J. Photochem. Photobiol. A: Chem. 117 (1998).
37. Katsuhiko Hirano, Kohei Inoue, Tomomi Yatsu, J. Photochem. Photobiol. A: Chem. 64 (1992).
38. 張立德、牟季美,奈米材料和奈米結構,滄海書局 (2002)。
39. Sclafani, A., Mozzanega, M.N.and Pichat, P., J. Photochem. Photobiol. A: Chem. 59 (1991).
40. Lee W., Gao Y. M., Dwight, K.and Word, A., Mater. Res. Bull. 26 (1991).
41. Y. M. Gao, H. S. Shen, K. Dwight, and A. Wold, Mater. Res. Bull. 27 (1992).
42. E. Obuchi, T. Sakamoto, K. Nakano / Chemical Engineering Science 54 (1999).
43. Chiu-Hsun Lin, Shu-Hua Chien, Jiunn-Hsing Chao, Chyi-Yang Sheu, Yu-Cheng Cheng, Ya-Jean Huang, Catalysis Letters 80 No.3 (2002).
44. A. A. Belhekar, S. V. Awate, R. Anand / Catalysis Communications 3 (2002).
45. Veronica Vamathevan, Rose Amal, Donia Beydoun, Gary Low, Stephen McEvoy / Journal of Photochemistry and Photobiology A: Chemistry 148 (2002).
46. T. Sano, N. Negishi, K. Uchino, J. Tanaka, S. Matsuzawa, K. Takeuchi / Journal of Photochemistry and Photobiology A: Chemistry 160 (2003).
47. Chul Han Kwon, Je Hun Kim, In Sun Jung, Hyunmin Shin, Ki Hyun Yoon / Ceramics International 29 (2003).
48. H. Yoneyama, Y. Toyoguchi, and H. Tamura, Reduction of Methylene Blue on Illuminated Titanium Dioxide in Methanolic and Aqueous Solutions, J. Phys. Chem., 76, 3460 (1972).
49. 魏國修,利用TiO2薄膜光電催化分解亞甲基藍之反應動力學探討,國立台灣大學碩士論文。
50. 林彥志,TiO2光觸媒電極分解亞甲基藍之變因探討及動力學研究,國立台灣大學碩士論文。
51. R.N. Viswanath, S. Ramasamy, Study of TiO2 nanocrystallites in TiO2-SiO2 composites, Colloids and Surfaces A: Physicochemical and Engineering Aspects 133 (1998).
52. W. Que, X. Hu / Optical Materials 22 (2003).
53. B. Malinowska, J. Walendziewski, D. Robert, J. V. Weber, M. stolarski /Applied Catalysis B:Environmental 46 (2003).
54. Luis J. Alemany, Miguel A. Bañares, Encarnación Pardo, Francisco Martin, Mercedes Galán-Fereres, José M. Blasco / Applied Catalysis B: Environmental 13 (1997).
55. Iis Sopyan, Mitsuru Watanabe, Sadao Murasawa, Kazuhito Hashimoto, Akira Fujishima / Journal of Photochemistry and Photobiology A: Chemistry 98 (1996).
56. S.M. Junge, P. Grange, Catal. Today 59 (2000).
57. R.T. Yang, W.B. Li, N. Chen, Appl. Catal. A: Gen. 169 (1998).
58. A.K. Dalai, R. Sethuraman, S.P.R. Katikanemi, R.O. Idem, Ind. Eng. Chem. Res. 37 (1998).
59. T. Lopen, F. Tzompantzi, J. Navarete, R. Gomez, J.L. Boldu, E. Munoz, O. Novaro, J. Catal. 181 (1999).
60. Yu-Hong Zhang, Aemin Reller / Materials Letters 57 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top